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Contenido del curso (I)

 La Materiay sus interacciones

* Relatividad. Lagrangianos.

——
\JJVZ_ Electrodinamica.
— )" ——

 Campos escalares reales y complejos

 Teorema de Noethery corrientes
—— > > conservadas. Invariancia de Gauge
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Contenido del curso (II)

» Ecuacién de Dirac. Espinores.

>
« Grupos SO(3), SU(2), SL(2,C), Lorentz
> \J\f;z— —>— * Electrodinamica cuantica (QED)

» Teoria de pertubaciones, tasas de
decaimientos y secciones eficaces.

—> > > * Reglas de Feynman
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Contenido del curso (III)

 Mecanismo de Higgs. Rompimiento

> espontaneo de simetrias globales 'y
locales.
‘JJVZ_ * Modelo Estandar: Quarks y Leptones.
—— " - Términos de masa.

« Cromodinamica Cuantica (QCD)

—7- 7 P

Simetrias de sabor
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Evaluaciones

2 Pruebas Regulares (PR), sobre contenido pasados hasta 1 semana antes de la
prueba.

1 Exposicion Oral (EO), sobre un tema a definir.

1 Prueba Final (PF), todo el contenido del curso.

NF = 50%PR + 15%EO + 35%PF
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Fechas

19/Noviembre/2020

6/Enero/2021
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Horario de clases

Bloque

Lunes

Martes

Miércoles

Jueves

Viernes

Particulas

Particulas

Particulas
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Iniciamos Miércoles 30/Septiembre!

https://www.youtube.com/watch?v=U8uDRN;j8Trg

»
-@F
I a)

@B & [« O
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Daniel Whiteson e
. @Danielwhiteson
How it started How it's going

ME CALL T A
"PARTICLE COLLIDER"

EARLY PHYSICISTS
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La fisica es una ciencia experimental
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La materia y sus interacciones (I)

« Cuando se habla de materia se tiende a pensar en objetos que existen en un
punto del espacio y que no cambian.

» Los objetos se afectan a través de Fuerzas

Basicamente pensamos en las 3 leyes de Newton.
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La materia y sus interacciones (II)

« Dependiendo del nivel de detalle, podemos ir desde objetos macroscoépios
“suaves” a cuanticos “discretos”

Café Cafeina: C;H, ,N,O

10" "4~ 2
Mecanica clasica Quimica cuantica
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La materia y sus interacciones (III)

Angstroms
~101m

Quimica cuantica
Nanociencia

2° Semestre 2020

Radio de Bohr

~10""m
Amegh?

mMee?

apgp —

Mecanica cuantica
Fisica Nuclear

R. Lineros. Introduccion a la fisica de particulas
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Radio del proton
~ 10" m

Fisica de particulas
Fisica Nuclear
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[.a materia

La materia ordinaria se conforma por estados ligados.

En los estados ligados participan:

» Quarks: up, down, strange, charm, top, bottom

» Leptones: electron, muon, tau, neutrinos

Pero estos estados ligados nacen debido al intercambio de Bosones de Gauge
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Leptones

El electron forma estados ligados con
los nucleos atdmicos.

Gracias a:
» La interaccion electromagnética.
« Momento angular cuantico

* Principio de exclusion
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Leptones

Los leptones son 6. Interactuan Electromagnéticamente y Débilmente

12 familia 22 familia 32 familia

Neutrino-electron Neutrino-Tau

Ve UV~
Electron Tau
Q= —e o _

2° Semestre 2020 R. Lineros. Introduccion a la fisica de particulas
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Hadrones

Los quarks forman estados ligados y forman a
los hadrones (mesones y bariones)

Gracias a:

2° Semestre 2020

Interaccion nuclear fuerte
Interaccidn electromagnética
Momento angular cuantico
Reglas de seleccidn

Principio de exclusion

https://pdg.Ibl.gov/2020/reviews/rpp2020-rev-quark-model.pdf

14 15. Quark Model

Figure 15.5: SU(4) multiplets of baryons made of u, d, s, and e quarks. (a) The spin 1/2 20-plet
with an SU(3) octet. (b) The spin 3/2 20-plet with an SU(3) decuplet.
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Quarks

Son 6 (x3) quarks. Interaccionan Electromagnaticamente, Débilmente y Fuertemente

12 familia 22 familia 32 familia
2 Up Top
Q=ze
3 u t
1 Down Bottom
Q=—3e d b

2° Semestre 2020 R. Lineros. Introduccion a la fisica de particulas
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[.as interacciones

Electromagnética
Foton 7Y

Interaccidon Fuerte

Gludn g

Interaccion Débil
Bosones ZI/Vi

Gravedad

Graviton (hipotética)



L.oS procesos

 Las particulas interactuan
a través del intercambio
de otras particulas

* Representacion de un
proceso mediante un
diagrama de Feynman

e e
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Unidades Naturales

Sistema de unidades que simplifica los calculos en fisica de altas energias:

c=2.998 x 1083ms~! c=1
h=6.582 x 107%? MeV s # h=1
k=28.617x10°"eVK™! k=1
€0 = 8.804 X 10712 Fm—1 €0 = 1

* Asi energia (mc?), momentum (mc), masa (m) se expresan en unidades de
energia: GeV, MeV, eV, etc.

« Temperatura en unidades de energia.

« Tiempo y distancia en unidades [energia]": GeV", MeV", eV~
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Unidades Naturales

Por ejemplo:
+ Energia: 1GeV = 1.602 x 10719

. Masa: 1GeV = 1.78285 x 10~ *"kg

+ Tiempo 1GeV ™! = 6.58212 x 10™%°s

.+ Distancia 1GeV™ = 1.973 x 107 m = 0.197fm

« Temperatura 1GeV = 0.01161K
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Una unidad para gobernarlas a todas!

2° Semestre 2020
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Ejercicios

* Escribir las férmulas que permiten definir las
conversiones entre unidades Sl y las naturales

* ;Qué unidades (naturales) tiene la carga eléctrica?



Ecuacién de Schrodinger en UN

0 {—hQ 0?

zhgllf(w,t) = 5.7

o, —1 09°
za\ﬂ(x,t) = {2777, 572 Vizx,t)
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Relatividad

Los postulados basico de la relatividad especial son:

1) Las leyes fisicas son igualmente validas en todo
sistema de referencia inercial

2) La velocidad de la luz (c) es constante en todo
sistema de referencia inercial

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas 20



Espacio y tiempo entre sistemas (I)

Tenemos 2 sistemas inerciales Sy S’ S’ se
mueve con respecto a S con velocidad
constante (boost):

US//S = vl
Entonces la transformacion entre sistemas:
r' = vy(x — vt)
’_
y =Y
/ B=v/c

—— 1

2
t' = ~(t —vzx/c?) LV

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas 21




Espacio y tiempo entre sistemas (II)

Aqui se observa que las unicas cantidades que
se ven afectadas por el cambio de sistema de
referencia son:

O sea, las coordenadas perpendiculares a la
velocidad relativa no se ven afectadas
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Eventos

e SOn cosas que ocurren en un
punto del espacio-tiempo

* Los eventos ocurren en todos

At

7

)

los marcos inerciales —4t

» La distancia ds? es igual en
todos los sistemas inerciales

ds® = *At? — AP

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Notacion tensorial

Basicamente se trata de descomponer: vectores, matrices, y tensores
indicando sus componentes con indices

L of
(A X B)r = €;;5A4:B; (Vf)i= O

Tensor Levi-Civita

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Notacién relativista (I)

Las coordenadas espacio temporales se pueden escribir como un unico objeto

Cuadrivector posicion xt = (t,f) (contra-variante)
T, = (t, —f) (co-variante)
Donde:
a:O:t, :131:37, :132:y, 3 =2

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas 25



Notacion relativista (II)

Los 4-vectores se relacionan a través de la métrica

(1 0 0 0) (1
0 0

, — v , _ 1
Asi x,u — LC]/U/CU Asi CE“ — g'UJ Ly

2° Semestre 2020 R. Lineros. Introduccion a

0
—1
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Notacién relativista (III)

Las contracciones entre cuadrivectores

—

wo__ Vo 32 2
T T = GupT x" =1 T X

a, b = g,,a"b" = '’ — @ -

son invariantes de Lorentz

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas

b

27



Transformaciones de Lorentz (I

La transformacion entre los sistemas Sy S’ (visto anteriormente) se puede
escribir a través de una transformacion de Loreniz

coshd —sinh6

AR —By v 0 0| [ —sinhf® coshf 0 O
v 0 0 1 0] 0 0 1 0
0 0 0 1 0 0 0 1

Asi un 4vector contravariante en S se transformaaunen S”:

P = AP ¥

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas 28



Transformaciones de Lorentz (II)

La invariancia de Lorentz implica que

T p
r,x" =z,

Por lo tanto, las transformaciones de Lorentz deben cumplir:

Jop = G NN g

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Transformaciones de Lorentz (III)

La transformacién inversa, es decir, de S’ a S corresponde a:

b — (A—l)ﬂ CU/V

14

Al componer las transformaciones se cumple:

A", (A_l)py = 0"y

S 1 u=v
g 0 pu#v

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Transformaciones de Lorentz (IV)

La transformacién entre sistemas inerciales puede ser simplemente una
rotacion entre coordenadas.

(1 0 0 0\ \
0 cosf sinf O
A%y = 0 —sinf® cosf O <>} i
\0 0 0 1) / :

Ejemplo: Rotacion en el plano xy
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Ejercicios

» Encontrar la relacion que existe entre la trasformada de Lorentz y su inversa.
Es decir:
Chmle s ale
s v

|74

» Escribir la transformacion de Lorentz de un 4vector covariante

/



Estructura del espacio-tiempo

El universo (o coleccién de eventos) accesible a un observador va a estar
clasificado por:
w2 t
Ly = T T

Futuro R

Evento en " e

z? > (0  Evento tipo tiempo

—NO accesible_ _NO accesible_

2> = (0  Eventotipo luz

r?> < (0 Evento tipo espacio TS
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Inversion temporal y espacial

Existen otras transformaciones (discretas) que no alteran las contracciones:

2 _ 42 _ 2

o
T,T" =X

* Inversion temporal (T): e T(:I}/”L) = (—t, f)

e Inversién espacial (Paridad): 't = P(zt) = (t,—7)

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Cinematica relativista (I)

Una particula en xt siempre va a estar en movimiento ya que el tiempo no
se detiene.

da”
dT

Se define la 4-velocidad como: ut =

Donde T es el tiempo propio de la particula (el reloj que se encuentra en
reposo con la particula)

ds® = c?dr?

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Cinematica relativista (II)

El 4-momentum de la particula viene dado por: pH = mut
E

. — .Q‘&éb
Y €s eqU|Va|ente a. p/L — (.E’7 p) Particula fisica &'b%%\
Lo genial es que p,up“ es invariante de Lorentz =~ ———Taaquiones T —
y vale:

p’up,u p— m2 H E2 — ]52 p— m2 Particula fisica
36
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Energia y momentum

Las transformaciones de Lorentz y sus simetrias nos indican que la
conservacion de la Energia y del Momentum es:

Conservacion del 4-momentum

Pﬁi=§:pf;,i b= D
o -
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Colisiones 2-2 (I)

Es el tipo de colisiones mas simple. C
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Colisiones 2-2 (II)

* La cinematica de la colision NO es invariante

de Lorentz.
» Existen contracciones que son Sl lo son. Nos
va a ser utiles mas adelante.

e
RERIRL S
KRS
KR
Sateo0te%e?
KRR
oS

%
%

%
k.

PR
BRRRS
XX

Variables de Mandelstam

s = (p1+p2)° = (p3s +ps)°
t=(p1—p3)° = (p2 — pa)°
U = (p1 —p4)2 — (pz —p3)2

R. Lineros. Introduccién a la fisica de particulas
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Ejercicio

* Mostrar que:

2° Semestre 2020

Sl e = s

R. Lineros. Introduccién a la fisica de particulas
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Marcos de referencia: Lab'’s frame (I)

Se encuentra en reposo con respecto al objetivo a estudiar (Target)

2° Semestre 2020

uccioén a la fisica de particulas

p1 = (E1,p1)
P2 = (m2,6

p3 = (E3,p3)
pa = (E4,p1)

41



Marcos de referencia: Lab's frame (II)

fluorescent

radiation source (radium)

El experimento de Ernest Rutherford (1911) para observar la estructura
atdmica es un experimento en este marco.
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Marcos de referencia: Lab's frame (III)

o® 7
&6-@“‘0 P1 = E’y(lv k)
. 5@/_/ P2 = (mev 6)
incident photon N ) ' N A
WW‘“’\ ps = By (1,sin 6 + cos o)
(O scattered electron p4 — (Ee’ pe (_ Sin 9/}: —l_ OB 9]%))

El scattering de Compton también es el ejemplo del Lab’s frame
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Marcos de referencia: Centro de Momenta (I)

Es el marco de referencia de los colisionadores modernos: LHC, LEP, TeVatron.

2° Semestre 2020 R. Lineros. Introduccion a la fisica de particulas
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Marcos de referencia: Centro de Momenta (II)

Es el marco Qe referengig dpnde el | L+ =0
momentum lineal total inicial es nulo:
3
Ps S
P1 = (Elap)
P2 = (E27 _ﬁ)
i " ps = (E3,q)
1
: P4 = (E47 _q>
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Marcos de referencia: Centro de Momenta (III)

Este marco de referencia es especial ya que:

Vs = F1 + Es
Energia de centro de masa
Ademas:
2 2
S+ms —m
Ey = 3 4

2V/s

2° Semestre 2020 R. Lineros. Introduccion a

p(sinfp; | + cosbpy)

Momentum de salida

3+mﬁ—m§

E, =
4 NE
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Ejercicios

» Analizar el caso de una particula que se desintegra en 2.
« Analizar el caso de una particula que se desintegra en 3.

PH Po



Campos ()

La fisica de particulas se basa en |a teoria de campos, también el
electromagnetismo, la mecanica cuantica, etc.

pxt) AP (xM) TH (M) Yr,r(z")
Escalar Vector Tensor Espinor

De manera muy simplista: Un campo es una funcion que adquiere
valores dependiendo del punto del espacio-tiempo donde se evalué.

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Campos (II)

Un campo escalar nos entrega un niumero real en cada punto del espacio-tiempo.

Ay
p(zt) — ¢ (a")

El valor del campo no va a cambiar entre marcos de referencia
1( b\ —1\H* v
¢'(at) = (A7) ")

Asi necesita transformar para mantener esa condicion

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas

49



Campos (II)

Un campo vectorial nos entrega un 4-vector en cada punto del espacio-tiempo.

Ay
VH(@h) — V()

El valor del campo va a transformar como 4-vector entre marcos de referencia
/ o —1\H v
Vit(zh) = APV ((A ) T )

Tensores, espinores y otras estructuras van a tener
similares transformaciones (ante Lorentz)
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Campos dinamicos (I)

Estos objetos van a ser dinamicos:
» Evolucionan en el espacio-tiempo

* |Interactuan con otros Ccampos

La variacion espacial de un campo escalar:

oz + dzt) = ¢(2") + do(z")

2° Semestre 2020 R. Lineros. Introduccion a la fisica de particulas
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Campos dinamicos (II)

Analicemos este objeto:

—> contravariante

0
de = @dﬂf“

Invariante <+——

> covariante

2° Semestre 2020 R. Lineros. Introduccion a la fisica de particulas 52



Campos dinamicos (III)

La derivada es un 4-vector co-variante

0  (0¢
8?_<at

Y su version contra-variante
09 (f%ﬁ
ox,, p ot’

2° Semestre 2020 R. Lineros. Introduccion a
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¢>: u¢

ng) — 9M
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Campos dinamicos (IV)

Podemos construir objetos invariante de Lorentz usando las derivadas

62
8“8M¢ — an — V2gb

Se parece a la ecuacién de una onda!

Jean-Baptiste le Rond d'Alembert
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Campos dinamicos (V)

Si aplicamos la derivada a un campo vectorial:  V#* = (VO, V)

oV S
8,uv'u — -V -V
ot
Se parece a una ecuacion de continuidad skl

Emmy Noether
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Ejercicio

Aplicar las derivadas sobre el campo escalar
v’
0o 0,00

Cuando:

~

et ioc il cr 0



Lagrangianos clasicos (1)

El principio de Hamilton nos dice que la trayectoria que recorre un objeto
mantiene su accion invariante.

A t1
‘ 0S A0 B S = / L(q, q)dt
!

A 0.5 =0 L=T-V

>

q
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Lagrangianos clasicos (II)

La variacion de la accion entre coordenadas
cercanas produce:

oL oL
0S5 = / <8q 0q + (")’qéq) dt

4oLy oL
dt \ O0q 0q

Ecuaciones de Euler-Lagrange

2° Semestre 2020 R. Lineros. Introduccion a la fisica

de particulas

Leonhard Euler Giuseppe L.UIgl
Lagrangia
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Lagrangianos clasicos (III)

El uso de coordenadas generalizadas nos permite definir
los momentos candnicos

oL
0q

p

Que nos permite relacionarlo con el Hamiltoniano y la energia

H(p,q) =p§—L=FE

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Lagrangianos clasicos (IV)

Las ecuaciones de Euler-Lagrange son las ecuaciones de movimiento en
coordenadas generalizadas.

1 oV

L=-mi*’-V A
2ma: () My - 0

d (0L _0_L_O
dt \ 0q 0q

Ecuaciones de Euler-Lagrange

Isaac Newton
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Sistemas continuos (I)

Cuando los objetos estan compuestos por una distribucién, hay
que considerar que el Lagrangiano no es solo un unico objeto

L:T—V:/Edm

Donde L esladensidad Lagrangiana

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Sistemas continuos (II)

. 2
Lz
L = Z 9 — V(yi)

Lagrangiano de set de objetos

2° Semestre 2020 R. Lineros. Introduccion a

a fisica

c=20(2) v

Densidad Lagrangiana
una distribucion objetos
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Sistemas continuos (III)

En el caso de una cuerda con tension: /\/1\/
¢(z)
1 (9e\T 1. [0p\°
c-(a) -4 (o)

En general, la densidad va a ser una funcion: E(gb, gb, gb/)
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Euler-Lagrange continuo (I)

La accidn va ser la integral en espacio y tiempo de la densidad

tl 1 .
S:/ / L(¢, ") dtdx
t() o
Al igual que antes:

55'_ 2 8_£ _|_£ a_[' — ()
=0 ot \os) " oz \og )~

Ecuaciones de Euler-Lagrange para el continuo

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Euler-Lagrange continuo (II)

I . 1
Usando el lagrangiano de la cuerda: L = §p¢2 — §T¢/2

Y calculando las ecuaciones de Euler-Lagrange se obtienen las
ecuaciones de movimiento:

2 2
IO% — @ — 0 Ecuacion de onda
ot? Ox?
donde ¢ =+/T/p

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Euler-Lagrange continuo (II)

De forma similar al caso discreto, la densidad de momentum:

- oc

f(é) =

Asi podemos definir la densidad Hamiltoniana:

H=T11¢—L
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Formulacién covariante (I)

En el espacio de Minkowski, la accidn es la integral del lagrangiano sobre el
espacio-tiempo:
S = / Ld*x

El diferencial de volumen d4513 es invariante de Lorentz. Por lo tanto:

Si L esinvariante, entonces S también lo es.
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Formulacién covariante (II)

El lagrangiano de un campo escalar va a ser una funcién:
L(¢,0,0)

El principio de Hamilton 4§ — () nos conduce a la version covariante de las
ecuaciones de Euler-Lagrange

e
dp " \0(0up))

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Formulacidén covariante (III)

También se puede definir el momento candnico generalizado (?):

oL
(On®)

w —
Pr= 0
Y el hamiltoniano(?):
H="P"O,p—L

.Y la energia?

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Ejercicios

* Encontrar las ecuaciones de Euler-Lagrange covariante usando el principio
de Hamilton.

» Aplique las ecuaciones de Euler-Lagrange al siguiente lagrangiano.

m2
L=3(0"¢) (Bu9) — 59"

1
2



Tensor de Energia-Momento (I)

Como hemos visto, la conservacion de la energia y el momento es esencial
para poder caracterizar sistemas fisicos.

En el contexto covariante (Minkowski), la energia y el momentum
se relacionan con de traslaciones rigidas en el espacio tiempo.

" — " + da"

Hermann Minkowski
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Tensor de Energia-Momento (II)

" — " + da"

Vamos a trasladar de manera rigida el espacio-tiempo

2° Semestre 2020 R. Lineros. Introduccion a la fisica de particulas
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Tensor de Energia-Momento (III)

La traslacion rigida va a afectar al lagrangiano: L:(gb, ﬁugb)
L—L+0L
(‘)[,
0(0

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Tensor de Energia-Momento (III)

El campo se ve afectado de forma similar

0 = aaj oa" = 0,poa”
0(0
0(0,¢) = (((y;;jb) oa”

= 0,(0,¢)0a” = 0,,(0,¢da”)

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Tensor de Energia-Momento (IV)

Asi la variacion del lagrangiano corresponde:

B oL y Debido a la variacion de
6=, (g4709) 39, 0,(60)

Por otro lado, el langrangiano varia por la traslacion rigida:

0L = 0,L da" = 5/18“[1 Sa¥ Variacion solo en la

direccion de da”

dat
0L
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Tensor de Energia-Momento (IV)

Ambas variaciones de cancelan:

oL .
9, <8(6M¢)ay¢—55£> 5a” =0

Lo que debe valer para cualquier traslacién rigida da” .

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Tensor de Energia-Momento (V)

Por lo tanto:
oL
G, 8,0 — ML) =0 8, T+ =0
: (a@m) ? ) g
Ecuacion de
continuidad!
=95 o, —bir

0(9.9)
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Tensor de Energia-Momento (VI)

La ecuacion de continuidad se cumple para las cada componente v/

7o S
2, Ty =0 5 FV-Top=0
0T, =0
0, T =0 T L. 7=
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Tensor de Energia-Momento (VII)

La componente 00 es la densidad hamiltoniana!

oL .
0
La densidad de energia se transporta:

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Tensor de Energia-Momento (VIII)

Al integrar sobre un volumen:

. S
— d’xr = — - fud
E%/VTO ' avTOnS

Conservacion de la energia!
(si el flujo es nulo)

2° Semestre 2020 R. Lineros. Introduccion a la fisica de particulas

Flujo de energia
(Potencia)

80



Tensor de Energia-Momento (IX)

Al integrar sobre un volumen las componentes espaciales:
%, =
Td3:v = — T - nds
ot oV

Flujo de momentum

Conservacion del momentum! (Fuerza)
(si el flujo es nulo)
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Ejercicio

 Estudiar el caso donde el espacio rota de manera rigida por una rotacion
infinitesimal, donde & — R((S@)f. Para pequenas rotaciones se

puede considerar que

—

« ;Como cambia el lagrangiano y el campo escalar?



Campos escalares (I)

El bosdn de Higgs, los piones, o cualquier particula de spin 0; pueden ser descritos
como un campo escalar.

Hideki Yukawa

Frangois Englert y Peter Higgs
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Campos escalares (II)

En mecanica cuantica no-relativista:

0y
"ot

—1 0% p?

2m 02 2m

= Hy Hip =

La ecuacidon de Schrodinger trata al espacio y al tiempo como coordenadas
distintas. De igual forma pasa con la energia y el momentum

2(9,5—>E —z@x—>p

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Campos escalares (III)

En el caso relativista la relacion entre energia y momentum:

E? = ]52 + m?
Nos permite escribir la “version relativista” de la ecuacion de Schrodinger

6 o, s
oz Y T

Esta es la ecuacion de Klein-Gordon, pero gb no es una funcién de onda a’la
Schrodinger.
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Ecuacion de Klein-Gordon (I)

Es la ecuacién de movimiento para un campo escalar y es covariante

82
(ﬁ‘v“"ﬂ)ab:o (9,0" +m*) ¢ =0

Y admite soluciones de onda plana:

b(t, ) = gboe—i(wt—l;-:ﬁ’) w2 = k2 1+ m?2

Oskar Klein Walter Gordon
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Ecuacion de Klein-Gordon (II)

La solucién mas general va a corresponder a una superposicion de ondas planas

I e

— * i =
( A ei(wkt—k-w)_'_ Ay e—z(wt—k-w)>

\/ka \/ka
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Ecuacion de Klein-Gordon (III)

La solucién mas general va a corresponder a una superposicion de ondas planas

d3k

09 = | Gy

(a(k)e—i(wkt—ﬁ-f) n CLT (k)ei(Wt_Ef))
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Lagrangiano campo escalar (I)

La ecuacién de movimiento del campo escalar es la ecuacién de Klein-Gordon.

El lagrangiano que la genera es:

[ = % (8M¢8“¢ — m2¢2) (campo escalar real)

oL oL \ "
35 0 (G0,5) 0 (@ en)em
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Lagrangiano campo escalar (I)

Al conocer el lagrangiano, podemos calcular la densidad de energia contenida:

7 = L 0" + 00)(010) + m?6?)

También la energia y el momentum total:
H = E a0 Wik P = E ayark
k
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Ejercicios

 Calcular el tensor de energia y momento para el campo escalar real

oL
T Do dir
50,0 ®

 Calcular la energia del campo escalar usando:

- dk —i(wpt—k-Z) + i(wt—k-T)
0(67) = | G (alk)e +al (k)e!@—FD)



Electromagnetismo clasico (I)

Una de la primeras particulas de las que tenemos evidencia y que ha generado
varias revoluciones en distintos campos.

« James C. Maxwell resumio en 4 ecuaciones
décadas de trabajo de mucho cientificos

* Unificacién de la Electricidad y el Magnetismo

James C. Maxwell
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Electromagnetismo clasico (II)

El electromagnetismo contiene muchos conceptos fisicos que son relevantes
para la fisica de particulas.

« Ondas electromagnéticas que se propagan en el vacio

» Fotdnes: particulas sin masa que viajan a la velocidad de la luz
 Transformaciones de Lorentz (base para la relatividad)

» Simetrias de Gauge

» Conservacion de la carga eléctrica

« Conservacién de la energia, momentum lineal y angular

* Leyes de la Optica
« CPT: Simetrias discretas
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Ecuaciones de Maxwell (I)

V- E = p >  Leyde Gauss
V X E — a—E — f > Ley de Amperé (+Maxwell)
O
V - E =0 > No monopolos magnéticos
- 0B
VXFE+—=0 »  Ley de Faraday-Maxwell
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Ecuaciones de Maxwell (II)

Conservacion de la carga eléctrica

V-E:p
dp
- +V-J=
ng—a—Ezf ot
O
V-B=0 1
VXE+%—B:O o, J" =0
t

iLa corriente es un 4-vector!
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Ecuaciones de Maxwell (III)

2° Semestre 2020

R. Lineros. Introducc

Potenciales escalar y vectorial

B=VxA
, DA
E=-VV - ==
VV 5
AP = (V, A)
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Ecuaciones de Maxwell (IV)

Las ecuaciones se pueden escribir en términos del tensor antisimétrico:
FHv = gHAY — ¥ AV

Que al separarlas por componentes:
FOi:aOAi_aiAO:_Ei
F7V=9'A1 -9 A" = 7" B”

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Ecuaciones de Maxwell (V)

Las ecuaciones se pueden escribir en términos del tensor antisimétrico:
FHv = gHAY — ¥ AV

En forma matricial:

0 -E, -E, —E.
E, 0 —-B, B,
E, B, 0 — B,
\E. -B, B, 0 J

R. Lineros. Introduccién a la fisica de particulas
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Ecuaciones de Maxwell (VI)

Las ecuaciones homogéneas nacen de la identidad:
OMFH + OV FM 4+ 9FF =0
Y las inhomogéneas corresponden a:

0, F" = J

iTodo muy elegante!
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Invarianza de Gauge (I)

Los campos eléctricos y magnéticos no cambian si el potencial cambia segun:

ox
VoV AP s AP — Gy
ff%fTJrVX

Transformacién de Gauge
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Invarianza de Gauge (II)

Esta transformacion afecta al tensor de Maxwell:

F/,[LV — a,uA/V . aVA/,u
AP = AF — Oy
FH = grAY — 9" A

F'HY — MY de forma trivial!
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Invarianza de Gauge (III)

Las transformaciones de Gauge indican simetrias que no afectan a las
ecuaciones de movimiento.

El electromagnetismo es un tipo de Teoria de Gauge.

Grupo de simetria U(1) U(1)xSU(2) SU(3) SU(5)
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Lagrangiano electromagnético (I)

Las ecuaciones de Maxwell son las ecuaciones de movimiento del campo
electromagnético.

Por lo tanto, deben nacer de un lagrangiano usando el principio de Hamilton

S—/£ i 8S=0 MMV + QY FAM 4 G FVA = ()

0 F" = J"
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Lagrangiano electromagnético (II)

El lagraniano debe ser escrito en términos del invariantes de Lorentz:

1 |4
L= FME, — J,A"
1

Aqui lo nuevo es que hemos incluimos fuentes externas de campos

electromagnéticos
/V JH
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Lagrangiano electromagnético (III)

En el caso de un campo vectorial, el langrangiano corresponde a:
L = L(A", 5" AM)

La variacion de la accidén va a corresponder a:

L L
_ 4 4 —
55—/5£d:13 1 O (a(av M)> 0
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Lagrangiano electromagnético (IV)

Al aplicar las ecuaciones de Euler-Lagrange, sobre el lagrangiano:

1 v
L= FMEy, — J,A"

Obtenemos las ecuaciones de Maxwell inhomogeneas:

0, V1 = JH

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas 106



Ejercicios

* Encontrar las ecuaciones de Maxwell al aplicar las ecuaciones de Klein-Gordon
sobre el lagrangiano EM:

1 v
L=->FRE, - JA

 Calcular el tensor de energia-momentum EM y su componente 00

oL
9(9, A)

ThE 9,4 S



Simetria de Gauge (I)

Si aplicamos una transformacién de Gauge: AP = AH — 8“)(

La variacion de la accién corresponde a:

552/—Juﬁuxd4a: 5Sz/(8“JM)Xd4:E

Conservacion de la carga
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Simetria de Gauge (II)

Al expandir las ecuaciones de Maxwell inhomogeneas: o, F""# = J¥

9, (9" AH — O AY) = 9,0" AF — 919, AV = JV

Sin perder generalidad, se puede conectar A* usando una transformacion
de Gauge

0, A" =0 8,d" AH = J*
Gauge de Lorentz
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Simetria de Gauge (III)

En la ausencia de fuentes externas: 0,0" A" =0 8MA“ =

2 -
§2A0 ~ V24 =0 ) AR(t, ) o Age_i(wt_kw)

Solucion de ondas planas:

Ecuacion de ondas . :
Ondas electromagneticas

Las ondas EM tienen relacion de dispersion: w2 — k2

iEl foton no tiene masal
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Simetria de Gauge (IV)

Otro gauge conocido es el Gauge de Coulomb también conocido como el
Gauge de Radiacion:

V.A=0 9, A" = 9y A°
Las ecs de Maxwell inhomogeneas corresponden a:

0,0V A¥ — 9F 9y A° = JH

2
2 40 02 A 9,
VA" = —p —— = VA =J+ VA
| ot ot
Potencial escalar solo depende
de la densidad de carga Ondas planas debido con la corriente y la densidad como fuentes
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Polarizacién del fotén (I)

Las ondas electromagnéticas las podemos describir en términos de sus
polarizaciones:

: w
AP = qetethnT

Gauge de Lorentz kﬁ,ﬁ“ =0 k-€=0 Gauge de Coulomb
Solo existen 2 vectores ortogonalesa k: 51, 52

€1 €2 =0 €1 - €] =€3-€3 =1

El foton tiene sdélo 2 grados de libertad
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Polarizacion del fotén (II)

Si la onda se propaga en z: E — kz

Pero mejor es definir las polarizaciones circulares:

2° Semestre 2020
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Simetrias discretas en EM (I)

Habiamos nombrado algunas simetrias discretas. El electromagnetismo es
invariante ante 3:

- Paridad [P] zt = (t,2) — P|xV]

(ta _f)

« Inversion temporal [T] L (t, f) s T[q;'“] (—t7 f)

« Conjugacion de carga [C] qg— C[q] = —q
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Simetrias discretas en EM (II)

Ante paridad [P]

P[o*] = (8°,-0") | P[J*] = (J°,=J") | P[A*] = (A", —-AY)

0 P
T —7F Ju:pdi j
dt P

Asi las ecuaciones de Maxwell son invariantes
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Simetrias discretas en EM (III)

Ante inversién temporal [T]

T[o"] = (—d°,9%) | T[J"] = (J°,—J%) | T[A*] = (A°,—A")

et
|
4,

dr? T|

t — —t JH = p—— ' S
Pt T[B

=
|
|

wy

Asi las ecuaciones de Maxwell son invariantes
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Simetrias discretas en EM (IV)

Ante conjugacioén de carga [C]

Clo"] = (8°, 8% ClJ"| =

No afecta

JH = p——

Asi las ecuaciones de Maxwell son invariantes

2° Semestre 2020 R. Lineros. Introduccion a la

—JH

dx*

dt

fisica de particulas

C[ A"
o
o

o, oy

_AH

| |
o &
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Ejercicios

* Mostrar que el lagrangiano EM es invariante ante C,B y T.

1 v
L=->FRE, - JA

 ;Qué sucede con el tensor de Energia y Momentum?

oL
9(9, A)

TAL 9,4 S



DAFI-02255
Introduccion a la Fisica de Particulas


https://robertolineros.com/teaching/fisica-de-particulas/
https://robertolineros.com/teaching/fisica-de-particulas/

U Universidad Catolica del Norte
Departamento de Fisica

DAFI-02255
Introduccion a la Fisica de Particulas

Roberto Lineros

Segundo Semestre 2020


https://robertolineros.com/teaching/fisica-de-particulas/
https://robertolineros.com/teaching/fisica-de-particulas/

Campos Escalares (Re-visitado)

La ecuacion de Klein-Gordon describe el movimiento de un campo escalar real.
(8,0 + m?) ¢ =0
Pero si volvemos a ver a las ecuaciones de Maxwell libres i.e. sin fuentes:
8,0” A" = 0 9, A" =0

Cada componente corresponde a una ecuacion de Klein-Goldon!
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Campos escalares complejos (I)

El campo escalar no tiene que ser solamente una funcidn real, también puede
ser compleja.

En este caso, los campos complejos van a describir particulas cargadas
debido a que tienen una simetria interna.

Por ejemplo:

7-‘- L Piones cargados H L Higgses cargados

* cuando se hable de carga, no necesariamente es carga eléctrica
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Campos escalares complejos (II)

Consideremos 2 campos escalares reales de igual masa.

1 1

L= 5 (8u¢1(9“¢1 — m2gb%) T 5 (8u¢23“¢2 — m2¢§)
Debido a la similitud de los campos, podemos ordenarlos en un vector:
o= c=1 (0,27 0*® — m* " D)

P2 2 \H

Aqui solo hemos generado un objeto basado en campos reales
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Campos escalares complejos (III)

Combinando los campos reales tal que:

1 + 12

¢: ¢*:¢1_Z¢2

V2 V2

Entonces el lagrangiano resultante es:
_ * 2 I x
L=0,070"p —m“9 ¢

iLagrangiano de un campo complejo!
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Campos escalares complejos (IV)

Usando el principio de Hamilton, se pueden encontrar las ecuaciones
de Euler-Lagrange

i2 coordenadas

L= £(¢, ot ¢, gb*v 6“@5*) generalizadas!

0,0Mp +m?¢ =0 0,0Mp* + m?¢* =0
Ecuacion de Klein-Gordon Ecuacion de Klein-Gordon CC
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Simetrias internas (I)

En la representacion de vector de los campos escalares:

(9 ) cosf)  sind ¢
(I)_<gb;> (I)_<—Sin(9 COSH)<¢;)

El lagrangiano es invariante ante rotaciones en 2 dimensiones

L==(0,2"0"® —m?®"®) == (9,0 0"®' — m*®" ') = [’

\. J \ J

Simetria bajo rotaciones en 2D i.e. Grupo SO(2)

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Simetrias internas (I)

En la representacion de campo complejo:
* / 10 /% —10 %
¢7 ¢ ¢ — € ¢ ¢ — € ¢
El lagrangiano es invariante ante cambios de fase de los campos:

£:8ﬂ¢*au¢_m2¢*¢:au¢/*a,u¢/_m2¢/*¢/:El
\. J L J

Simetria bajo rotaciones en el plano complejo i.e. Grupo U(1)

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas



Simetrias internas (III)

Grupo SO(2)

Isomorfismo

2° Semestre 2020 R. Lineros. Introduccion a la fisica de particulas
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Simetrias en la E. de Schrdédinger (1)

En la ecuacion de Schrodinger se ensenha que p = |¢|2 es una densidad
de probabilidad y que se conserva.

aw ve o . 0 ) N
i+ o =0 2 U = 5=V (WY — VYY) =
dp B

ila probabilidad se conserva!

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Simetrias en la E. de Schrédinger (II)

La ecuacion de Schrodinger libre tiene soluciones de onda plana.

La densidad:

p =YY

p=|NJ?

Siempre positivo. Probabilidad

2° Semestre 2020

b = Ne—i(wt—lz’-f)

La corriente:

(

J —
2m

. k

R. Lineros. Introduccién a la fisica de particulas
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Simetrias en la E. de Schrédinger (II1)

Hay una corriente conservada, pero ¢cual es la simetria?

Si vemos el lagrangiano que genera la ecuacion de Schrodinger:
L=5 ("0 — 0" y) — 5 —Vi' - Vi) — 4" V)

iEl lagrangiano es invariante ante un refases de la funcion de onda!

w/ — 6739

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas 12



Ejercicios

» Mostrar que las ecuaciones de Euler-Lagrange del siguiente lagrangiano:
L=5 W0~ 8"p) — 5= V4" -V — "V

corresponden a la ecuacion de Schrodinger.



Simetrias en el campo escalar complejo (I)

En analogia al caso de Schrodinger. El lagrangiano:
— * 2
L=0,9"0"p—m"¢"¢
es invariante ante el refase del campo: qb/ — 0

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Simetrias en el campo escalar complejo (II)

Si el campo complejo se afecta debido a una transformacion, de manera
general se obtiene:

oL oL oL
&0 do*
¢ So0+ 50,0)° %) T 5557 T 5557

=0, (55,5) + 0 (55,7 )

El lagrangiano es invariante ante esa transformacion, asi que: 0L = (

0(9u97)

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas 15



Simetrias en el campo escalar complejo (III)

Una transformacion infinitesimal: ¢ = (1+100)¢ 0p = 1900

Produce una variacion del lagrangiano
5L =0, (i(qb8“¢* _ ¢*8“¢))(59

Asi: 0,5" =0 SH =1i(p0" o™ — ¢" 0" @)

ihay una conservacion! jcorriente conservada!

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Simetrias en el campo escalar complejo (IV)

¢ Esta corriente tiene una densidad de probabilidad a'la Schrodinger?

St = i(p01g" — ¢ 0" )

La solucién de onda plana nos entrega lo siguiente: qﬁ — NeiPMC“
La densidad La corriente
SY = 2F|N|? S = 2|N|%5

ssiempre positiva?

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas 17



ntimateria (I)

e
electron

Fic. 1. A 63 million volt positron (Hp=2.110° gauss-cm) passing through a 6 mm lead plate
and emerging as a 23 million volt positron (Hp="7.5x 10" gauss-cm). The length of this latter path

et

positrén

MARCH 15, 1033

El descubrimiento del positron, la antiparticula
del electrdn, abrid el camino para entender el
problema de los estados de energia negativa

PHYSICAL REVIEW VOLUME 43

The Positive Electron

Cams D, ANDRRSON, Coliforia Tnstitus of Technologs, Pusadona, Califormia
(Received Febuary 25, 1933)

Out of a group of f cosmicray tracks

o a vertical Wilion chamber 15 tracks were of positive

fonization produced 3t is concluded that. the charge i less
than twice, and i probably exactly equal to, that of the
proton. If these particles carry unit positive charge the

N August 2, 1932, during the course of

photographing cosmic-ray tracks produced
in a vertical Wilson chamber (magnetic field of
15,000 gauss) designed in the summer of 1930
by Professor R. A, Millikan and the writer, the
tracks shown in Fig. 1 were obtained, which
seemed to be interpretable only on the basis of
the existence in this case of a particle carrying a
positive charge but having a mass of the same
order of magnitude as that normally possessed
by a free negative clectron. Later study of the
photograph by a whole group of men of the
Norman Bridge Laboratory only tended to
strengthen this view. The reason that this
interpretation seemed so inevitable is that the
track appearing on the upper hall of the figure
cannot possibly have a mass as large as that of a
proton for as soon as the mass is fixed the energy
is at once fixed by the curvature, The energy of
a proton of that curvature comes out 300,000
volts, but a proton of that energy according to
well established and universally accepted de-
terminations' has a total range of about 5 mm in
air_while that portion of the range actually
visible in this case exceeds 5 cm without a
noticeable change in curvature. The only escape
from this conelusion would be to assume that at
exactly the same instant (and the sharpness of
the tracks determines that instant to within
about a fiftieth of a second) two independent

+ Rutherford, Chadwickand Elis, Rediasions from Redic-

Tess than twenty times the clectron mass. These particles
will be called positeons. Because they occur in groups
associated with ather tracks it is concludes! that they must
be secondary particles ejected from atomic nucle.

=

electrons happened to produce two tracks so
placed as to give the impression of a single
particle shooting through the lead plate. This
assumption was dismissed on a probability basis,
since a sharp track of this order of curvature
under the experimental conditions prevailing
occurred in the chamber only once in some 500
exposures, and since there was practieally no
chance at all that two such tracks should fine up
in this way. We also discarded as completely
untenable the assumption of an electron of 20
million volis entering the lead on one side and
coming out with an energy of 60 million valts on
the other side. A fourth possibility is that a
photon, entering the lead from above, knocked
out of the nucleus of a fead atom two particles,
one of which shot upward and the other down-
ward. But in this case the upward moving one
would be a positive of small mass 5o that either
of the two possibilities leads to the existence of
the positive electron.

In the course of the next few weeks other
photographs were obtained which could be in-
terpreted logically only on the positive-electron
basis, and a brief report was then published:
with due reserve in interpretation in view of the
importance and striking nature of the announce-
ment.

Macxironi oF Ciarce AND Mass
Tt is possible with the present experimental

actise Substances, p. 294, Assuming Res* and using data  data only to assign rather wide limits to the
there given the range of a 300,000 volt proton in air S.T.
s about § mm. +C. . Anderson, Science 76, 238 (1932).

191

https://doi.org/10.1103/PhysRev.43.491
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is at least ten times greater than the possible length of a proton path of this curvature.
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Antimateria (II)

@ El Modelo Estandar incluye a
© las antiparticulas.
o| d

Las antiparticulas tiene los
g Ve . . numeros cuanticos opuestos a
% sus particulas companeras.

2° Semestre 2020 R. Lineros. Introduccion a la fisica de particulas

19

Anti-Quarks

Anti-Leptones



Antimateria (III)

La corriente en el campo escalar complejo no corresponde a una probabilidad
ya que:

:::\/]524—7712

Podemos interpretar a los estados de energia negativa como particulas que
retroceden en el tiempo.

energia negativa

energia positiva ¢ — N@Z(_ \V p2+m2t_ﬁ'f)
Qb _ Nez(\/]@ +m?2t—p-&) ¢ _ Nez( /p2—|—m2(—t)—ﬁ-f)

iretrocede en el tiempo!
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Corrientes (I)

Independiente de la interpretacion, lo importante es que la corriente se conserva.

— — — — — —
-_— ’Qﬁ’ S'u — ’q§’ S'u
: creacion de par :
N
N\ N
¢ \ ?" N\
N p iquilacién
- — aniqui
z-" -
H_ = "¢ H_="¢
- -
tiempo tiempo
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Corrientes (II)

La corriente conservada nos va a indicar las simetrias de los procesos

Carga eléctrica
NUmero muonico

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Interacciones del campo escalar (I)

Hasta el momento hemos considerado el caso de campos escalares libres, es
decir:

((%(9“ —|— m2)¢ — O No fuentes externas

El lagrangiano de interaccién es donde se introduce una fuente de campo.
L= »Clibre + »Cint

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Interacciones del campo escalar (II)

Asi identificamos en el lagrangiano distintos términos:

1 2
L= 50,00"6 — —-¢" — pp —
|

término cinético

interaccion

término de masa

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Interacciones del campo escalar (III)

Este lagrangiano tiene su ecuacion de movimiento:

(8lua'u _I_ m2)¢ — 10 fuente externa

En el caso de una fuente puntual y que es constante en el tiempo:

p p— 953 (f) delta de Dirac en 3D
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Interacciones del campo escalar (IV)

Como la fuente que consideramos es independiente del tiempo, entonces:
(00" +m?)¢ = g6°(T) (=V? +m?)¢ = g6’ (Z)

Vamos a resolver al ecuacién tiempo-independiente usando la transformada de
Fourier del campo:

—

o) = [ b )= [ @
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Interacciones del campo escalar (V)

Nuestra ecuacion se transforma en:

(k2 + m%&(%) = (27%9)3/2

Por lo tanto, su solucion es facil de obtener usando la transformada de Fourier

inversa
~ dSk 6—@'12-:7;’
O(T) :/ 3 1.2 2
(27)3 k% +m

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Interacciones del campo escalar (VI)

La integral se puede resolver usando los residuos en: k = +im

— &

gb(f) B / dBk 6—@'12-:2” 1 oe) kde -
) @r)B3k2+m?2 ir ) K2+ m?

—m|x|

. - g €
" M) = 4 Tl

N

Campo de Yukawa

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Interacciones del campo escalar (VII)

El campo de Yukawa es producido por una fuente puntual en el origen.
1000

—m|z|

-
| 5 g e
& H(Z) =

A |x|

0.001

1076

sobre el decaimiento 1/x

2° Semestre 2020 R. Lineros. Introduccion a la fisica de particulas
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Interacciones del campo escalar (VIII)

Originalmente Yukawa asocid esta solucion al campo de mesones que hay
en torno a un nucleon

El protdn y el neutrén son fuentes
de mesones .... como los piones.

La extension del campo depende

de la masa.
””’

2° Semestre 2( Introduccion a la fisica de particulas
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Interacciones del campo escalar (IX)

Si se quiere ver como 2 nucleones interactuan, hay que calcular el hamiltoniano
de interaccion.

—m|Z—2' |

1 .
H=-" d>xd’z’ p1 (T)p2(T')

€

‘ —

T — T

"= /d%d?’fc’m(f)pz (Z)V (|7 —Z))

V(T) = — 1 Potencial de Yukawa
mwr
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Interacciones del campo escalar (X)

+ + . . . L,
p p Visto con diagramas, la interaccién
i i , , . ,
| proton neutrén es mediada a través
de piones
7_‘_O
La informacion de la fuente
- - la transporta el propagador
n n P propag

¢ - ¢
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Ejercicios

* Escriba el lagrangiano para el campo escalar con simetria SO(2) que incluya
fuentes externas.

L==(9,2"0"® — m*®" ®) + (corriente — campo)

1
2

* Encuentre la corriente conservada asociada a esa transformacion



Electrodinamica de campos escalares (I

El lagrangiano del campo escalar complejo es invariante ante refaseamiento del
campo:

L= 0,6"0"¢ —m’6"6

¢ (z") = e’ p(aH) L[

invariante

Lo que conlleva a una corriente conservada debido a la simetria U(1)
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Electrodinamica de campos escalares (II)

En este caso, el campo lo refaseamos independiente de la coordenada donde
lo estemos viendo.

Esto se conoce como una transformacién U(1) global

\/¢ 4"\/(#

W
L el campo en todos los puntos
del espacio transforma igual
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Electrodinamica de campos escalares (III)

Ahora vamos a considerar una transformaciéon U(1) local, es decir, el campo va
a ser refaseado en cada punto del espacio-tiempo.

/! \/4’

qb/(a:“’) — ew(w“)ﬁb(wu) ¢ Es el lagrangiano invariante?
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Electrodinamica de campos escalares (IV)

o () = ) g(ar) L= 0,0"0"6 —m?9"

El término de masa es invariante ante transformaciones U(1) local

2° Semestre 2020 R. Lineros. Introduccion a la fisica de particulas
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Electrodinamica de campos escalares (V)

Aplicando la derivada sobre el campo escalar transformado localmente:
Ot = e (0 ¢ + i0"0¢)
0,0 =e " (0,¢* —i0,00)

00" ¢ = 0,0 0" $ + 9,00" 09"
+ 0,0 (i (90" 9" — 90" 9))

No es invariante, pero reconocemos la corriente U(1)
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Electrodinamica de campos escalares (VI)

Para remediar la situacion vamos a introducir el campo del fotdn sin fuentes
externas. De tal forma que:

1
L=Ly— F"E,

Ademas necesitamos introducir la derivada covariante:

DY = 0! — e AV

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Electrodinamica de campos escalares (VII)

La derivada covariante es una derivada que cumple:

Dt¢" = U(x) (D*¢) ¢ =U(z)¢

Es decir transforma como el campo.

Asi las derivadas comunes las promovemos a covariantes:
L = (Dy¢p)*D* 24t — - IV
= ( u¢) ¢ —m QP — A pv

¢ Es este lagrangiano invariante?
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Electrodinamica de campos escalares (VIII)

El término de la derivada para el campo transformado U(1) local queda

DH¢' = e (O — ie A" 4 i0"0)¢

La simetria de Gauge del electromagnetismo nos permite redefinir A" a
través de una transformacion de Gauge sin afectar al lagrangiano EM.

AP — AP — OHy

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Electrodinamica de campos escalares (IX)

Afectando la derivada covariante de la siguiente manera:

DF¢ = e (0" — ie AP + ied'y + i0"0)¢
Asociando el gauge con el refaseamiento: ex = —6

Asi recuperamos la definicion de derivada covariante de Gauge.

DH@' = ¥ (O —ieA")p = e’ DM ¢

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Lagrangiano SQED (I)

El lagrangiano es invariante de U(1) local gracias a la simetria de gauge del EM.

L= (Dud)* D" — 66— T E,,

Lagrangiano SQED
Donde las transformaciones son:

¢/ — 6?;9

At = A + 18“6’
e
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Lagrangiano SQED (II)

$ La simetria U(1) local viene
preservada por la simetria de

gauge.
§§ §A“

Bosones de Gauge
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Lagrangiano SQED (III)

Si expandimos el lagrangiano vamos a identificar los lagrangianos libre y las
interacciones entre campos:

L= Lfree + £int

"¢ —mie'd 0 mmmmmmmm e

1

" F MVAVAVAVAVAVAVAVAVAV,
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Lagrangiano SQED (IV)

Los términos de interaccion vienen de las derivadas covariantes. (Du¢)*DM¢

ieA, (0" — pO* ™) AW,

3 campos en el lagrangiano vértice de 3 patas
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Lagrangiano SQED (V)

Los términos de interaccion vienen de las derivadas covariantes. (Du¢)*DM¢

<
2 %k ’
e“A,A O™ ¢ ‘.
>,
g *
4 campos en el lagrangiano vértice de 4 patas

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas 47



Ejercicios

» Escriba las ecuaciones de movimiento para el campo escalary el campo EM
segun el lagrangiano:

L= (Dug)* D6 — m?" 6 — 7FHF,



Fermiones

La materia que conocemos esta conformada por fermiones (particulas de spin

semientero)

< U
S
o d
(7p)]
2 Ve
@)
p—
o
9 e

2° Semestre 2020

Por ejemplo, un electron puede estar en los estados:

1 1)

En el Modelo Estandar, los leptones y los quarks
son fermiones

R. Lineros. Introduccién a la fisica de particulas
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Fermiones en QM no relativista (I)

En Mecdanica Cuantica, el electron puede ser descrito por 2 funciones de onda:
_( r(2)
A T
L\
La dindmica viene descrita por la ecuacion de Schrodinger-Pauli:

N2

Z(?ﬂﬂ = <(i (Zv — GA) — 6140) I[2><2 + ,UBE . 6) 'Qb

2m

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Fermiones en QM no relativista (II)

La ecuacion de Schrodinger-Pauli contiene mucha fisica:

10 = ((i (ZV — eA) — eAO) [y o + ,uBB )

Vectorial Magnetén de Bohr
Potencial Escalar

Campo Magnetico Matrices de Pauli

4 <
01 g

— =)

O — 02 | =

o

03/ 2

Efecto Stern-Gerlach
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Fermiones en QM no relativista (III)

Las matrices de Pauli son y seran relevante para describir transiciones de spin.

(0 1 (0 —i A
1=1\1 0o/ 2= \i o0 3= \0 -1

Tienen la siguiente relacién de conmutacion.
[O'Z', O'j] — 0045 — 040; — QZEijkO'k

Generadores del Grupo de Simetria SU(2)
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Ecuacion de Dirac (I)

Es una descripcion cuantico-relativista del electron.

o E2 = p2 +m?

Klein-Gordon (escalar)

Schrodinger

Dirac (fermion)

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Ecuacion de Dirac (IT)

Uno de los puntos cruciales cuando se formula un modelo relativista es que
tiempo y espacio aparecen en potencias iguales.

. V>
104 = ——p 071 = (V2 4+ m?)
2m
No relativista Relativista (Klein-Gordon)

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Ecuacion de Dirac (III)

Dirac propuso una dependencia lineal en el momentum, de tal manera que:

Q1

10 = H H=a-p+m=—ia-V+m

Para que todo tenga sentido ¢, 3 son matrices.

Por lo tanto,

Ecuacion de Dirac

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Ecuacion de Dirac (IV)

La ecuacion de Dirac debe reproducir la relacidn relativista entre energia y
momentum.

E? = p? + m?
Asi el hamiltoniano (energia) al cuadrado:
H? = (a@-p+ fm) (a-p+ pm)

H? = (@- 5 + (Bm)* + (@ §)(Bm) + (Bm)(@- )

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Ecuacion de Dirac (V)

Para satisfacer:

(@ - p)* + (Bm)* + (@ p)(Bm) + (Bm)(@ - p)

Es necesario que las matrices cumplan que:

52:]1 {C(,L’B}:O

Anticomutador: {A,B} = AB + BA

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Ecuacion de Dirac (VI)

La propiedad que cumplen estas matrices pueden ser construida en términos de
las matrices de Pauli

Matrices en la representacion Chiral Matrices en la representacion de Dirac

. 1 0 0 1 0 — 1 0
vonde: = (1 %) (0 D) w=(t5) eam(t )
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Ecuacion de Dirac (VII)

Esto implica que w es un objeto de 4 componentes:

=g ) e

T

V3
V4

)

Estados chirales Espinores de Weyl: Left-handed y Right-handed

La ecuacion de Dirac se escribe:

[@' (000; — & - V) oom } (%) 0

oo Z(Ooat+5V) IDR

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Ecuacion de Dirac (VIII)

Si la particula no tiene masa, las ecuaciones se desacoplan:

iatwL — 10 - va EwL = —0 - ﬁwL antiparalelo
i@twR = —10 - V@DR EwR =0 - ﬁwR paralelo

Fermiones sin masa, ho puede cambiar estado de helicidad.

En el Modelo Estandar, el neutrino es solo un espinor Left-Handed: Vg,
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Ecuacion de Dirac (IX)

La ecuacion se puede escribir de una forma covariante.

O-'u — (0-070-170-270-3) O-M — (0-07_0-17_0-27
Asi:

7;5"“8“?7@[/ — me =0
Z'O"ua,uwR — me =0

Aparte de los indices de Lorentz, ahora hay indices espinoriales

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Ecuacion de Dirac (X)

Volviendo a la ecuacion original:

y gracias a las propiedades de la matrices:

(8?—V2+m2)¢20

(8,0" +m?) ¢ =0

Cada componente del espinor cumple
una ecuacién de Klein-Gordon

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Ejercicios

 Comprobar que las matrices

Chy —~ <_00i (9) 5

cumplen las relaciones de anticonmutacion:

0 00
00 0

52 = {aiaﬁ} — {047;, Oéj} — 2]15@]



Matrices gamma ()

Son una coleccion mas compacta de las matrices ¢v;, 3 de la ecuacion de Dirac

0 ' 0.,
V=06 =P =057
vector contravariante

Ademas las matrices gamma cumple la relacion:
[T 720 13 %
{7",7" }=2g

Esto implica que: (70)2 — T (77;)2 — T
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Matrices gamma (II)

En la representacion chiral, las matrices gamma se relacionan con las de Pauli

0 oH
wo_
= (o %)

En la representacién de Dirac, las matrices son:

o__ [ 00 0 i 0 —o;
(a7
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Matrices gamma (III)

Otra matriz gamma que es muy util es 75

v° = iy yly?ys 5

{v".7"}=0

Nos permite escribir los operadores de proyeccion chiral.

(I++°) = (8 (90)

l\.’)lr—\

Pr =

[\Dlr—l

- =(F 5) P
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Matrices gamma (IV)

Usando los proyectores sobre el espinor, w — (¢L> se cumple:

Py =g,

Ademas
2
PL _ PL

2° Semestre 2020

P: = Pp

VR

PrY) = ¢g

PrPr, = PLPr =0
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Ejercicios

* Mostrar que las matrices gamma cumplen las siguiente identidades:

14

Yy, = 41 shatan o

» Mostrar que las representacion chiral y de Dirac estan relacionadas por:

1 [ =1l
W s o L e e
TDirac — U/ychiralU U= \/§ <_]I I[)



Ecuacion covariante de Dirac (I)

Usando estas matrices la ecuacion de Dirac

Se puede escribir de forma muy compacta y covariante: g

(g m) 30

(ty"0, —m)yp =0

Ecuacion de Dirac (covariante)

2° Semestre 2020 R. Lineros. Introduccion a la fisica de particulas



Ecuacion covariante de Dirac (II)

La ecuacion de Dirac nos deja escribir la ecuacion adjunta:
(iv"0, —m) e =0 i0,y" 4+ mip = 0

Donde

P = aatayt =Ty
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Simetria interna (I)

Las ecuaciones de Dirac tienen simetrias internas que aparecen cuando son
combinadas:

iy 0, — map = 0 10,0y +ma = 0

Oy (@”Y“??) =0

SH = PyHy
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Simetria interna (II)

La corriente se comporta como vector de Lorentz, ademas:

Densidad de carga

. 0 .0 2
SH = ahyHa) SO = Y% = Ty ~ |N|
Como el electrdn tiene carga eléctrica:

EM — _€¢’YM¢

ya podemos intuir que la corriente para el EM tiene que ser algo asi
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Ejercicios

» Usando las ecuaciones de Dirac, muestre que si:
g
emel X
Wi WoeH @
Entonces:

o
T



Lagrangiano de Dirac (I)

La ecuacion de Dirac es la ecuacion de movimiento de un fermion.
L= £(¢7 Y; au% 5;%0)

Donde las ecuaciones de movimiento, se obtienen por el principio de Hamilton

5S:/d4x(5£—>0
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Lagrangiano de Dirac (II)

Notar que el orden si importa cuando se con respecto a la variaciones

oL oL
06" T (o

— 0L — 0L
+ (Mﬁ + 6(0" ) (0" 7)

0L =

0(0"1))
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Lagrangiano de Dirac (III)

Las ecuaciones de Euler-Lagrange para un fermién nos deben conducir a las
ecuaciones de Dirac:

oL au( oL )
0y 0(94)

oL oL . B
@ — " <8(8“@)) =0 O —miy =0

0 10,0y +map =0

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas



Lagrangiano de Dirac (IV)

El lagrangiano que nos produce las ecuaciones de movimiento correctas es:

L= i@%ﬁ’% — m@%b

A veces la contraccion entre un 4-vector y las matrices gamma se escribe:

Ya, =y,0" =d¢ asi queda L = ip@p — map)
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Lagrangiano de Dirac (V)

El lagrangiano debe cumplir ciertas propiedades basicas:

L L Escalar real
£ = im0y —mpyy <
Invariante de Lorentz

Esto no quiere decir que sus componentes sean invariantes
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Invarianza de Lorentz (I)

El lagrangiano debe ser invariante de Lorentz:

L= iy 0'y —mpy e L =iy, 0 — mi

. L /
Ante transformaciones de espacio-tiempo: o = AP "
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Invarianza de Lorentz (II)

Al transformar el espacio-tiempo, vamos a necesitar conocer como transforman:

Y — A

=y

ya que estan compuestos por indices espinoriales (e indices de Lorentz).
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Invarianza de Lorentz (III)

Si consideramos que un vector de Lorentz lo podemos escribir como una matriz
de 2x2:

el 4?2 2V — o

20+ 3 ! —ix?
X(CL’“):< 0 3>

Esta forma satisface que el determinante es invariante de Lorentz

det X = 2"z,
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Invarianza de Lorentz (IV)

Esta matriz se puede construir mediante la contraccion con el 4-vector de Pauli:
X(z") = z,6* = 270" + 2*0"

Ya que las matrices de Pauli (y la identidad) cumplen que:

detog =1 detor, = —1
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Invarianza de Lorentz (V)

La transformacién de Lorentz afectara al 4-vector y a las componentes de la matriz
/ /! /] ~
xt = A x" X' =uw,0 H

ya que el determinante es invariante:

det X = 2tz det X = det X’
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Invarianza de Lorentz (VI)

La invarianza de los determinantes nos conduce a

M X'M =X MM =1 atriz
unitaria
det M =1 SU(2)

det M7 det X’ det M = det X

Una transformacion de Lorentz es una rotacién en el espacio espinorial
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Invarianza de Lorentz (VII)

Si realizamos el mismo procedimiento con

X(z") = z,0" = 2% — 2’0"

El determinante es invariante de Lorentz y por lo tanto

~

NIX'N =X

que también es una rotacién
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Invarianza de Lorentz (VIII)

Las matrices X, X dependen de los 4-vectores de Pauli:

~

X(z!) =z 0" X(z!) =x,0"

Esto nos permite establecer como los 4-vectores de Pauli transforman:

MTGHFM = A* 67 NToEN = A* gV

MM =1 NIN=I1 M'N=I
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Grupo SL(2,C) v el grupo de Lorentz (I)

Lo que acabamos de ver es la relacion que existe entre el grupo de Lorentzy
el grupo SL(2,C) (Matrices 2x2 con determinante = 1).

Una transformacion tipo boost corresponde a una matriz hermitica:

0. _ 0 . 0\ ~ _
P =exp (§B-a> = cosh (§)I[+smh <§>B-0

donde tanh(f) =
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Grupo SL(2,C) v el grupo de Lorentz (II)

En una transformacion general (boost y rotaciones):

M = PU N =P U

Donde [/ esuna matriz unitaria que es responsable de las rotaciones
espaciales

¥ = R¥
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Ejercicios

—

» Encontrar la forma de las matrices unitarias de 2x2: U( ) responsable de
las rotaciones espaciales en el espacio espinorial.

zl +ix?2 Y —°

x(o") = (

29 g3 gl z':c2>

X’ e ZBO —I—CC/S :Ijll =L i$/2
(') = B Pl B R



Invarianza del lagrangiano (I)

Una vez establecido como los 4-vectores de Pauli transforman, podemos ver
el lagrangiano

L= i@”m({?“w — may)

Usando los estados chirales: 11, 1R, el lagrangiano se escribe:

L=1 (%’)/MC{QMZDL) + 1 (%%3”%2) —m (%@DR T w_RwL)

aqui son estados L,R de 4 componentes
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Invarianza del lagrangiano (II)

En la representacion chiral las matrices gamma son

0O o
b
= (o %)

Por lo tanto las transformaciones de Lorentz las afectan de la siguiente forma:

0 NTogtN
moAV
Ahat = (MT(}“M 0 )
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Invarianza del lagrangiano (III)

Para clarificar la notacion entre un espinor de 2 o 4 componentes:

o= (Y) we=(¢) — T=0x) =0

Ahora podemos visualizar el lagrangiano en espinores de 2 componentes:

£ =i (x150,x) +i (€10"9,) —m (x'¢ + €1x)

left-handed right-handed mezcla
puro puro
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Invarianza del lagrangiano (IV)

Al realizar una transformacion de Lorentz:

Los términos cinéticos quedan:

X’T(}“C%X, X/Ta-VAl/ua,uX/

£/T0-'ua//¢€/ flTUVAuMauf,

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Invarianza del lagrangiano (V)

Para satisfacer la invarianza de Lorentz, se debe cumplir que:
/! /!
Y = My & = N¢&
el término de masa transforma segun:

YT + 6Ty = \TMTNe + ¢INTMy

I I y es invariante(!)
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Invarianza del lagrangiano (VI)

En resumen: El lagrangiano es invariante de Lorentz.

@w > Escalar de Lorentz (invariante)

@’Y” (0 » 4-vector de Lorentz (contravariante)

Ademas (por transformaciones de paridad):

i)y° > Pseudoescalar

@75fy“¢ » Pseudovector
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Paridad

Ya conocemos que paridad cambia el signo de las componentes espaciales.

L =1 (X]L&“é?ﬂx) +1 (570“(%5) —m (XTf + fTX)

/

L= (XLU“auXP) + 1 (g;&&“@uﬁp) —m (X;ngP + ﬁ}LDXP)

Por lotanto: Xp = f fP — X

Los estados chirales se intercambian
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Ejercicios

* Mostrar que:

* Mostrar que:

Wy Y = —ipy
Wy Y = ihy°Y

PY Y = — ¢y’ vy

Py Y = Ay vy

bajo Paridad

bajo Lorentz

bajo Paridad

bajo Lorentz



Soluciones libres de la ec. de Dirac (I)

La ec de Dirac para los estados chirales:

w0t 0,x —m& =0 (0,0 —m*)x =0
10"0,§ —mx =0 (0,0 —m*)E=0

Satisfacen las ecuaciones de Klein-Gordon

Considerando soluciones de onda plana con energia positiva:

E = +y/p? +m?
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Soluciones libres de la ec. de Dirac (II)

Las soluciones con energia positiva:

x(p) = Xoe_ip“mu E(p) = §0€_ip“x“ A: p/Ac

se reducen a;:

en el marco de referencia que viaja con la particula.
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Soluciones libres de la ec. de Dirac (III)

En el marco de referencia de la particula, las ecuaciones de movimiento no
son capaces de fijar al bi-spinor u .

U= (é) + us (2) = u1|+) + uz|—)

O sea, la combinacién lineal de las 2 soluciones ortogonales.

Por lo tanto:
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Soluciones libres de la ec. de Dirac (IV)

Tomando el caso donde: 1y = 0

y aplicando un boost inverso en el gje z: ﬂ =

x+(p) = M (é) e~imt ¢ (p) = NI (é) —imt
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Soluciones libres de la ec. de Dirac (V)

Donde el boost inverso: tanh 6 = (3

MT:P_1:6_9/2<(1) 01> NT:P:€9/2<1 O)

y asi:

X+ (p) = ure”*/? ((1)) e~imt ¢ (p) = uye?/? (é) —imt
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Soluciones libres de la ec. de Dirac (VI)

Finalmente de vuelta en el marco de referencia inicial:
—0/2 (1\ _i(EBt—p2) 0/2 (1\ _i(Et—p2)
X+(p) = uze 0) € §+(p) = e () e

Si hubiéramos considerado el otro caso:

X—(p) = uge’/? <(1)> o) £ (p) = uge /2 <(1)> e~ {(Et—pz)
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Soluciones libres de la ec. de Dirac (VII)

Los estados + corresponden a soluciones con helicidad positiva.

1 —1 —pz —0/2 T
e ()= (345)

4 componentes 2 componentes

_
<

p-F=+1
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Soluciones libres de la ec. de Dirac (VIII)

Los estados - corresponden a soluciones con helicidad negativa.

B 1 Bt 0/2|_
o= (E) = (So)
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Helicidad (I)

Es el numero cuando asociado la proyeccién del spin sobre la direcciéon de
propagacion.

Por ejemplo:

hpy = (T) f) @:) o <f+)

es autoestado de helicidad y tiene autovalor +1
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Helicidad (II)

hp_ = <(ff f) @: ) - @: )

es autoestado de helicidad y tiene autovalor -1

Mientras que:

Notar que la helicidad no es invariante de Lorentz!
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Soluciones de energia negativa (I)

También estan las soluciones de energia negativa: E=— \/p2 + m?

Que van a corresponder a las soluciones de antiparticulas

ipuat

19, X —mé =0 X(p) = Xoe
io" 9,6 —my =0 E(p) = &

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Soluciones de energia negativa (II)

En el marco de referencia de la antiparticula:
¥(0) = ve'™* £(0) = —ve'™"

Donde al igual que antes:
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Soluciones de energia negativa (III)

Donde las soluciones en el marco de referencia inicial:
@ZJF _ (Xff) _ Lei(Et—pz) ( 69/62|+> )
Et V2 —e0/2|4)

7. X— 1 i(Et—pz) [ — 0/2|—
b= (&)= (o)
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Grados de libertad de las soluciones

La ecuacion de Dirac vincula las 4 componentes del spinor.

Las soluciones libres corresponde a 4 posibles estados de particulas:

Particula Particula Antiparticula Antiparticula

helicidad +1 helicidad -1 helicidad +1 helicidad -1
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Simetria interna del lagrangiano (I)

Volviendo a estudiar el lagrangiano de Dirac,
L = i)y, 0" — myy
Vemos que es invariante ante cambios de fases globales.

w’ — eww asi podemos buscar la corriente de Noéther asociadal
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Simetria interna del lagrangiano (II)

Volviendo a estudiar el lagrangiano de Dirac,
L = i)y, 0" — myy
Vemos que es invariante ante cambios de fases globales.

w’ — eww asi podemos buscar la corriente de Noéther asociadal
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Simetria interna del lagrangiano (III)

La variacion del lagrangiano en cada uno de los campos, nos lleva a la derivada
total:

oL oL
ok = O <a<8m>5¢ T m)

y COMO:
o = 1 (i66)
0t = 1 (—id0)
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Simetria interna del lagrangiano (IV)

Finalmente;

0L = =20, (Yy") 60 — 0

Asi recuperamos la corriente conservada obtenida de las ecuaciones de Dirac:

SH = qhyHah 0,5" =0

La corriente conservada es consecuencia de la simetria U(1) global
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Ejercicios

Muestre que el siguiente lagrangiano:
Ly (XTc}“é’Hx) |7 (fTU“(‘?ﬂf) —my € —m*ey
puede ser transformado en:

L=i(x'6"0,x) + 1 (£10"9,8) — m(xT¢ + £Tx)

usando una refase asimétrico en los campos: X, &
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Electrodinamica (I)

La electrodinamica reune en una formulacién la dinamica del campo
electromagnético, particulas cargadas, e interacciones.

e e g e v o o
¢ Y
Y el le
€+
e e Y € Y Y
interaccidén entre interaccién entre emision de fotones creacion de pares
particulas cargadas fotones
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Electrodinamica (II)

La electrodindmica cudantica (QED) es una de las teorias cudnticas de campo que
explica con precisidon impresionante observables relacionados con el electron.

Momento dipolar anémalo del electron:

Ec de Dirac: G = 0 QED:  a. = 0.001 159 652 181 643(764)

Valor experimental:  a. = 0.001 159 652 180 73(28) V

Experimento y Teoria concuerdan en 10 cifras significativas!!!
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Electrodinamica de fermiones QED (]

Habiamos visto que el lagrangiano del campo fermidnico es invariante U(1) global:

L = ithy, 0" — myn) ' = ey

y que debido a esa simetria tenia una corriente de Noéther conservada:

St = @’Y“Q? OpSt =0
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Electrodinamica de fermiones QED (II)

Al incluir el lagrangiano EM y la interaccion via la derivada covariante:

— — 1
L = iy, D' — mipip — TF F

Donde  DH = oF — iqA*
Vemos que este lagrangiano sigue siendo invariante U(1) global

SE = @v“w se sigue conservando
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Electrodinamica de fermiones QED (III)

La derivada covariante nos produce un término de fuente de campo EM

— 1, -

L =iy, 0" —mypy — ZF'LL Fiw + qpyup A*
_JMAM
asique: JH = —qS" esuna corriente de particulas/antiparticulas cargadas

9,J" =0

conservacion de carga eléctrica

Complementariamente la simetria de Gauge implica
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Electrodinamica de fermiones QED (IV)

Al considerar transformaciones U(1) local: @b' = ew(x)w

El lagrangiano es invariante solo si la conectamos con la simetria de gauge del EM:

_ — 1
L= W%Duw R mww o ZF'LWF/M/

) / 10
Las transformaciones Corresponden a. @D — €

1
A= AP 4 Z i
q
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Ejercicios

Mostrar que para las soluciones de energia positiva y negativa de la
ecuacioén de Dirac, la corriente corresponde a:

e 40 = dE 00

para es una particula/antiparticula moviéndose en el eje-z.



Vértices en electrodinamica

Al expandir el lagrangiano, vemos que solo existe un término con 3 campos:

L = Lpirac,libre T LGauge,libre T Lint

Ling = qA" Dy, A"

|

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas



Conjugacién de carga (I)

Ya habiamos visto el concepto de conjugacién de carga, cuando vimos las
ecuaciones de Maxwell:

1 1
L — —ZF'LL F’u,/ - J'LLAM

Donde la conjugacién de carga cambiaba de signo la corriente y el campo

C[J*] = J* = — ¥ C[AM] = AH = — AH
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Conjugacién de carga (II)

Asi se mantiene el lagrangiano EM invariante:

1 1
EZ_ZF'LLVFMV—JMAM £C:—Z

¢Qué sucede en el caso de QED?
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Conjugacion de carga en QED (I)

La conjugacidén de carga para un espinor se va a relacionar con cambiar una
particula por su antiparticula:

C

w _ woe—i(Et— D) h w* _ wgei(Et—ﬁ-f)

Estado energia positiva Estado energia negativa
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Conjugacion de carga en QED (II)

La fuente de corriente EM va a estar asociada a la corriente conservada en
electrodinamica:

JH = —qiy"y JH = —J"
pero no sabemos como afecta la conjugacion de carga al campo fermidnico.

Si consideramos al ecuacién de Dirac;:

(v Dy —m)y =0

y la conjugamos
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Conjugacion de carga en QED (III)

(—ty™(0y +iqA,) —m) Y™ =0

Usando la representacién chiral de las matrices gamma.

vemos que no vamos a obtener una ecuacién con la forma de la ec de Dirac.

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas

14



Conjugacion de carga en QED (IV)

Las reglas de anticonmutacion para las matrices gamma, nos indican que:

{/Y,Lbafyl/} — QQLW {"YZ,’Y;} — Zg,uz/

Entonces:
Vo2V =~V V2 M F 2 YaY2 = V2V2

de esta forma se contrarresta el cambio de signo por conjugar
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Conjugacion de carga en QED (V)

Asi se obtiene que:
(9" (O +igA,) —m) (—iv*y*) =0

Al considerar la conjugacion de carga del campo EM:  A°H = — AH

(i*y“(@u —iqA7,) — m) Y =0

: ., : . . 2
Se obtiene la ecuacion de Dirac si el campo : ¢C — —Y w*

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Conjugacién de carga en QED (VI)

Esta construccién nos permite ver que:

PyHih = —apeyHap?

2° Semestre 2020 R. Lineros. Introduccion a la fisica de particulas
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Ejercicios

|dentificar la operacidon de conjugacion de carga para el caso de la electrodinamica
de campos escalares SQED.

L= (Du¢)" Do — m6p — FME,



Conjugacidn sobre estados chirales

: : : : X
Si consideramos el espinor por sus componentes chirales: ¥ = <£

C
El conjugado de carga del espinor seria: ¢ = (§c>

Lo que nos da que el conjugado de carga relaciona los estados chirales opuestos

XC B O _,L'O.2 X* B —?:0'25*
&) \ic? 0 &) \io?y*
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Fermiones de Majorana

Los espinores de Majorana cumplen la propiedad de ser su propia antiparticulas

Los neutrinos (masivos) se esperan que sean del tipo majorana Ettore Majorana
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Conjugacion y los estados barrados

La formulacion mas comun de la conjugacién de carga es mediante los
espinores barra, tal que:

W = C@T (' es el operador conjugacién de carga

Este objeto cumple las siguientes
propiedades:

c'=C'=Cc'=-C
C™'y#C = — (v*)"
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Ejercicios

Mostrar las siguiente propiedades de la conjugacion de carga:

@ =

P = hey°
Yykah = eyt



Interacciones (I)

La interaccion entre campos es lo que hace posible que sucedan los procesos
que existen en el Universo.

- ® [ Y
o’. >
[
4 (N
4 \\
"." ”.-.O ....... - 'S
- L ) LY
o”.o .... Ceaaes’ N
o e L4 [
L] " ~
PRSP o P " @ o oo occaae —
7 - . - I,
e " o ® - P
o ®* oo o - ® o ® coo=" )
LY e ® [N - ®
- o Q...-’o Do e o “o P
..~ \.-... ® o o
L Y 4
[ 4
[ - ®
S o=
t— — 0O DS o o000 - o= t—(X)
e e””
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Interacciones (II)

El proceso donde el estado inicial evoluciona al estado final corresponde a
una transicién donde:

f) = 51i)

con S el operador: Matriz-S o Matriz de scattering
STS =588T=1
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Interacciones (III)

En el scattering:

el estado inicial seria:

y el estado final:

2° Semestre 2020 R. Lineros

ete” — ,u+,u_

|Z> — |€_7p/fa 81>|6+7p57 82>

) = |, pk,s3) |ut, P, s4)
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Interacciones (IV)

Z/v

e 17

asi el proceso se describe en términos de la matriz-S, pero es mas facil de
visualizar con los diagramas de Feynman.
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Transiciones (I)

En mecanica cuantica, un estado evoluciona segun el operador de evolucion
temporal:

(ay (81)[U (t1, t0)| (o))
Para particulas, los estados iniciales y finales son estados libres en infinito:

Spi= lim  (ay(t1)|U(t1,%0)|i(t0))
to — —o0

tl — _I'OO elemento de la Matriz-S
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Transiciones (II)

En principio la matriz-S también incluyen los procesos donde nada sucede:

S:]l_i'if (fIS|1) = dpi + 1Ty

Matriz de transferencia

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Transiciones (III)

La matriz-S es proporcional a la amplitud de Scattering en el espacio de
momentum:

(fIS —1]i) = i(2m)" 6% (p — pi) My

La delta de Dirac en 4-D se encarga de la conservacion de 4-momento
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Amplitud de scattering (I)

La amplitud de scattering considera los posibles caminos que nos llevan de un
estado al otro.

€+ 7] €+ ,Ll/+
A Y
Mtotal — +
e no e nwo
—I— o o
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Amplitud de scattering (II)

Asi la amplitud total es la suma de varias amplitudes, pesadas por la potencia
de los acoplamientos:

Mtotal — Z QZMk
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Teoria de perturbaciones ()

En mecanica cuantica, el hamiltoniano total incluye las interacciones asi:

.0
1 — =

o Hy = (Ho + V)Y P(t1) = €_iH(t1_t°)¢(to)

Pero el hamiltoniano libre puede ser resuelto por soluciones de onda plana:

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas 32



Teoria de perturbaciones (II)

La solucién se puede encontrar en términos de la solucion libre:

P(t,F) =) an(t)pn(F)e Fn

n

de tal forma que:

% = —ZZan ( / O3V pnd ) e~ En=Er)t
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Teoria de perturbaciones (III)

Considerando que la interaccidn esta activa un tiempo T, y que iniciamos de

un modo puro; a,, = O;n,

La amplitud de transicion:

Tri = ay(T) = —i/

—T/2

T/2

dt ( / ¢}V¢id3x) e!(Fr— Bt
de forma mas compacta:

Ty = —i / OV id' s
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Teoria de perturbaciones (IV)

Si la interaccion es independiente del tiempo, entonces al integrar sobre todo el

tiempo
T/2
Tfi — — (/ ¢;V¢zd3x) / ez(Ef—qu)tdt
—T/2

En el limite I" — oo la amplitud corresponde:
Tri = —1 (/ qb}Zngide) 2%5(Ef — F;)

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas

35



Teoria de perturbaciones (V)

La tasa de transicidn o probabilidad por unidad de tiempo:

Entonces

Wi = 2n|Vy|?0(Er — E;)
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Amplitud en SQED (I)

En la electrodinamica de campos escalares, el langrangiano es:

L= (D) DFp —m?6"6 — LW F,,

donde la interaccidn entre campos se da en los términos de la derivada covariante

DH = 0" —1qA*
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Amplitud en SQED (II)

Separando los términos de interaccién:

L= £free + »Cint

se obtiene;

Ling = —tqA" (8,u¢*¢ — ¢ u¢) — q2A,uA“¢*¢
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Amplitud en SQED (III)

El lagrangiano de interaccion seria equivalente al potencial: L=T =Y

Si consideramos solo el vértice de 3 patas, para analizar la amplitud de transicion:

o
L)
(Y
0N
.
.
R

0
',"
""""
o, .
v, o
el

Ty = —i/d4$ ¢}V¢i
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Amplitud en SQED (IV)

T = —i/d4:13 (iq) A* (Guqb;qbi — gb}@uqbi)

Al desarrollar la amplitud de transicion considerando que los estados inicial y
final son ondas planas:

b; = N;e~ Pi® Of = Nfe_ipfw
Tyi= =i [ %00} (alos +pi)), 64"

Ty = —i/d4x NiN;i [—q(py +pi)], @7 7P" AH
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Amplitud en SQED (V)

Asi tenemos lo que se conoce como regla de Feynman:

o
o
.
.
''''
""""
L) A
''''

—iq(py + Pi)u
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Amplitud de scattering in SQED (I)

Notemos que la amplitud de transicion tiene a la corriente conservada del
campo escalar complejo:

Lri = —i/d4g; Aﬂjp{i jp{i = 1q (qﬁi@ugb}t - ¢}k”au¢i)

0

. .

'''''''
''''
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Amplitud de scattering in SQED (II)

Vamos a calcular la amplitud del scattering entre 2 escalares a 2 escalares:

P1

..
L 4
L4
L 4
L]
LS
L]

q 8 M (P12 = P3¢4)

**
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Amplitud de scattering in SQED (III)

El diagrama lo podemos interpretar como 2 corrientes conectadas por el fotén.

1
.. .
......... ® j/”“ o “"""“ . 4 /’l’ 1
i T'=—i | dxA"J,
por otro lado el campo EM que percibe J" viene de J?
r.- -: 7% 2v L AV 2v
“““““ &® 2 {"%... a/’l’F — j aua A p— j
o J
W
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Amplitud de scattering in SQED (IV)

En el espacio de momentum, la ecuacion para el campo EM corresponde a:

. 1 -
00" AY = J* AV = ——=J%
q
. 4 179" o — ey —
T = —3 da?jM 5 J; donde q = P2 — P4
q
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Amplitud de scattering in SQED (V)

Como las patas externas son ondas planas:

2° Semestre 2020 R. Lineros. Introduccion a la fisica
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Amplitud de scattering in SQED (VI)

La integral en x sobre la exponencial corresponde a una delta de dirac.

/ d*z et = (2m)*6* (P)

T = —i(27)*0*(p1 + p2 — p3 — pa) N1 No N N
MY
—q(pr + p3).l| 52 = q(ps + pa)y]
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Amplitud de scattering in SQED (VII)

T = —i(2m)*6*(p1 + p2 — p3 — pa) N1 No N3 N
— g
[—q(p1 + p3),]] " J[=aq(p2 + pa)]

T = —i(2m)*6*(p1 + p2 — p3 — Pa) N1 N2 Ny Nj M

La amplitud de scattering corresponde a:

LM = [—ig(p, +p3>un—z‘9qfn—z'q<p2 T pa)y)
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Amplitud de scattering in SQED (VIII)

—iM

..
~
L4
L]
L]
L]
L]
L]
LS
L]

P4 7 —iq(p2 + pa)s

2° Semestre 2020 R. Lineros. Introduccion a la fisica de particulas
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Observables en fisica de particulas

Los observables mas utilizados son:

« Tasa de decaimiento o desintegracion — I

« Seccion eficaz o de dispersién g

“
'
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Tasa de decaimiento (I)

La desintegracidon corresponde al caso cuando un estado cuantico se

desintegra en otros.

Ocurre solo si las condiciones de energia-momentun se satisfaceny si las

simetrias lo permiten.

Y

2° Semestre 2020
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Tasa de decaimiento (II)

K J=3

Mass m = 0.1134289257 + 0.0000000025 u
Mass m = 105.6583745 + 0.0000024 MeV
Mean life 7 = (2.1969811 + 0.0000022) x 1075 s
T#_,_/‘T‘u_ = 1.00002 + 0.00008
cr = 658.6384 m
Magnetic moment anomaly (g—2)/2 = (11659209 + 6) x 1010
{g#+ - gﬂ—) / Baverage — {_011 + 012) X 10_8
Electric diapole moment |d| < 1.8x 10719 ecm, CL = 95%

Decay parameters (]
p = 0.74979 £ 0.00026
n = 0.057 + 0.034
d = 0.75047 + 0.00034
€P,, = 1.0009* 56067 [
€Pud/p = 100187 56505 1]
¢ =1.00 % 0.04
& =0.98 + 0.04
a/A = (0 + 4) x 1073
o/ /A = (10 + 20) x 10~3
B/A = (4 + 6) x 1073
BJA=(2+£7)x1073
7= 0.02 + 0.08

https://pdg.Ibl.gov/2020/tables/rpp2020-sum-leptons.pdf

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

j'.l+ modes are charge conjugates of the modes below.

p
p~ DECAY MODES Fraction (I';/I) Confidence level (MeV/c)
e Vgl ~ 100% 53

e Velyy [d] (6.0+0.5) x 108 53
e TVevye e [e] (3.440.4) x 1072 53
Lepton Family number (LF) violating modes
e VT, LF  [f] <12 % 90% 53
ey LF < 4.2 x 1013 90% 53
e~ ete LF < 1.0 x 1012 90% 53
e 2y LF < T x 10— 11 90% 53

La desintegracion del muon nos sirve

para estudiar el comportamiento de

las interacciones electrodébiles
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https://pdg.Ibl.gov/2020/tables/rpp2020-sum-leptons.pdf

Tasa de decaimiento (III)

[2]

10P) = 3G

Mass m = 1.00727646662 + 0.00000000009 u
Mass m = 938.272081 + 0.000006 MeV [l

|m, — mg|/m, < 7x1071, CL = 90% (%]
\%\ ;(,‘j’,—i) = 1.00000000000 + 0.00000000007
|ap + anl/e < 7x 10710, CL = 00% I8l

‘qp + qe|/e < 1x1072 [d

Magnetic moment p = 2.7928473446 =+ 0.0000000008 ey
(np + up) / pp = (0.002 = 0.004) x 10~°

Electric dipole moment d < 0.021 x 1073 ecm

Electric polarizability v = (11.2 = 0.4) x 10~* fm?

(S =31)

La desintegracion del protdn nos entregaria
informacion super relevante sobre Teorias de
Gran Unificacion (GUT) y de Fisica mas alla

del Modelo Estandar (BSM)

Magnetic polarizability 5 = (2.5 £ 04) x 107* fm3® (S =1.2) Three (or more) leptons
Charge radius, up Lamb shift = 0.84087 = 0.00039 fm [d] N vp >19 (0), > 162 (5) oo Pe Rl >3 wh @
" [d] D= et > 1600 0% 143 p— efptpu > 359 9% 457
Charge radius = 0.8409 + 0.0004 fm P stw > 2800 0% 105 Py ety >170 0% 469
E - n— vw > 108 90% 144 n— ete v > 257 90% 470
Magnetlc radius = 0.851 + 0.026 fm [e] [ ] N etk >17 (), > 1000 (p) 90% 339 n= pte v >83 90% 464
T R 29 _ anozs [f E e N— ptK >26 (n), > 1600 (p) 90% 320 n— ptpw >79 90% 458
Mean life 7 > 3.6 x 107 years, CL = 90% (p —+ invisible mode) o sy . ol o e
Mean life 7 > 103 to 1033 years [l (mode dependent) n vkE - 260 w0% 3. P Wt p > 615 0% 430
p—+ e" K*(892) >84 20% 45 p—= pTvr >220 90% 463
n e
See the “MNote on Mucleon Decay” in our 1994 edition (Phys. Rev. D50, N eKn(E02) AT EL ) 0% ® g : S e izxw4 Zz:j’ i:
1173) for a short review. Antilepton + mesons "
® Inclusive modes
. . e g P i 4 >ij7 ﬁn/o x: N — et anything =06 (n, p) 90% -
The “partial mean life” limits tabulated here are the limits on 7/B;, where 2 = % + i 5 J
: : : ] : i : n > 5 9% 440 N — ptanything =12 (n, p) 90% =
T is the total mean life and B; is the branching fraction for the mode in p i o0% s N = et xOanything 506 (n. p) 90% =
question. For N decays, p and n indicate proton and neutron partial P > 101 90% 427 iy
lifetimes n > 74 %% 427 ucleon modes
. n >18 90% 319 The following are lifetime limits per iron nucleus.
R o =
; ; L P pp— ata >722 90%
Pa":';EI mean life P PO :;5 _— - pn = ’.T:Tr‘i >170 90% -
p DECAY MODES (10°" years) Confidence level (MeV/c) n— pmat >49 0% 453 L : Tase M;; ;‘;’ -
e nn -+ wlr % -
g >';2 x:f ﬁg pp— KtKt im 80% -
- >
Antilepton + meson ae Ao e w5 pp— efe’ >58 w% -
Y o > pm Kt 57 90% 330 pp—> ety 330 %0% i
N—= e'm > 5300 (n), > 16000 (p) 90% 459 nt K 2 Z ppy ptp S17 00% <
N—= pta > 3500 (n), > 7700 (p) 90% 453 Lepton + mesons ) pn ety >260 o -
P >30 0% 448 pn— pto >200 90% -
N—= vm > 1100 (n). > 390 (p) 90% 459 n— >29 %% 440 pn— 77, >29 90% -
+ p— >17 90% 425 nn = v.T, >14 90% -
p— e'qg = 10000 90% 309 ET R i e aVe
nn = vy, > 14 20% -
p— ptn > 4700 90% 297 P 15 w30 it =5 invisible Satxw S o0%
n— vy - 158 90% 310 P > 245 0% 270 pp > invisible >5x1075 9%
Antilepton + photon(s) =
= + 0 P DECAY MODES
N—= etp > 217 (n), > 720 (p) 90% 149 W e e M A R
N—= utp > 228 (n), > 570 (p) 90% 113 Pt jf:‘« = o = 5 DECAY MODES (years) Confidence level (MeV/c)
p— etyy > 100 90% 469 P e q S 7x 105 90% 460
HTTP://PDG.LBL.GOV Page 1 Created: 6/1/2020 10:25 n— vy 219 9% 470 Pos py S5ui0t 0% 463
. . P — 0 4105 90% 450
o . Antilepton + single massless . B gl i 4
2° Semestre 2020 R. Liner . «x P [ >80t Wi 43
A Wi o - B e n >2x10 %% 309

ol ol ©l ol © ol o ol

>8x103
> 900

>ax103
>9x 103
>7x10%
>2x 10t
>2x10%
> 200

0%
0%
0%
0%
0%
0%
0%
0%

297
337
326
337
326
469
463
143
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Tasa de decaimiento (IV)

Si tenemos un sistema de particulas que se desintegran de forma Poisson.

dN
s =—I'N N(t) — N(O)G_Ft
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Tasa de decaimiento (V)

Las particulas se desintegraran en distintos formas, asi que la tasa de
desintegracion es una cantidad aditiva:

fi

N
Ftotal p— E FZ h ........................
1=1
fi
L'
BR@ — Branching ratio: Probabilidad de desintegracion en el modo i
Ftotal
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https://arxiv.org/pdf/1107.5909.pdf

Tasa de decaimiento (VI)

Caracteriza los branching ratio
son esenciales para desarrollar
técnicas de busqueda

1 IFIIIIl

T

LHC Higgs Cross Section Working Group

N
™
111 ]IIII 1
LHC HIGGS X5 WG 2011

i Standard Model Higgs-Boson Branching Ratios
with Uncertainties

Higgs BR + Total Uncert

102

A. Denner!, S. Heinemeyer?, L. Puljak®, D. Rebuzzi*, and M. Spira®

IIII]I|

L Institut fiir Theoretische Physik und Astrophysik,
Universitidt Wiirzburg, Emil-Hilb-Weg 22, D-9707{ Wiirzburg, Germany
2 Instituto de Fisica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
* University of Split, FESB, R. Boskovica bb, 21 000 Split, Croatia
4 Universita di Pavia and INFN Sezione di Pavia, Via A. Bassi, 6 27100 Pavia, ltaly and
* Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
(Dated: September 12, 2011)

| IIIHI|

1 0'3 1 | | L | 1 | I 1 | 1 | | | 1
1 00 1 20 1 40 1 60 1 80 200 We present an update of the branching ratios for Higgs-boson decays in the Standard Model. We
list results for all relevant branching ratios together with corresponding uncertainties resulting from
M [Gev] input parameters and missing higher-order corrections. As sources of parametric uncertainties we

include the masses of the charm, bottom, and top quarks as well as the QCD coupling constant.
‘We compare our results with other predictions in the literature.

FIG. 1: Higgs branching ratios and their uncertainties for the low mass range.

myp = 125.10 £ 0.14 GeV (El bosén de Higgs fue descubierto en 2013)
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Desintegracion y amplitud (I)

Si consideramos la desintegracion de una particula que se encuentra en reposo

P1
P, M

Pn
la tasa de desintegracion por volumen del espacio de fase:

Regla de oro para decaimiento

IM|*d®,, (P;p1,---,pn)

(2m)*
dTl' =
2M
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Desintegracion y amplitud (IT)

La regla de oro se puede entender como la composicién de 3 objetos:

(277) 2
dl' = 77 IM[7d®y (Pipy,..., o)
Espacio de fase de
Normalizacion de las n-particulas
la particula inicial Modulo cuadrado de la
amplitud (invariante de Lorentz)
| S 2F
L —P-x 3

¢ = —=e p=2E|N|* = =— d°xrp=2F

VV V
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Desintegracién y amplitud (III)

El espacio de fase de las n-particulas corresponde a:

n n d3p
AP, (P;p1,. .. pn) = ( sz>H (2m)32E;

1

Conservacion del 4-momento Espacio de fase de cada

particula normalizado
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Desintegracion y amplitud (IV)

Para encontrar |la tasa de desintegraciéon basta con integrar:

(2m)* 2
I = &, (P:p1,... 00
[ S MEdR (P )

Dependiendo del niumero de particulas finales, la integracion puede ser
complicada de realizar, pero hay técnicas desarrolladas para esto.
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Decaimiento a 2 cuerpos (I

El caso mas simple de desintegracion es a 2 cuerpos.

(2m)*
2M

d3p1 d3p2

dT =
(27)32E; (27)32F,

IM|?6* (P — p1 — p2)

La conservaciéon del momentum nos permite reducir a:

1
32m2 M

pidp1d§h
ElEék con

B3 = /pi +m3
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Decaimiento a 2 cuerpos (II)

La delta en energia nos da que:

o M2 md —m3 VO = (my + ma)?) (M2 — (my
1 p—

— m2>2)

oM 1| = oM

Asi la tasa por angulo solido y la tasa de decaimiento integrado son:

dr = yMyQ‘pl‘dnl = |M|2‘p1‘

3272
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Ejercicios

Estudiar la cinematica del decaimiento a 2 y 3 cuerpos.

(2m)* 2 ¢4 d’p d’ps
g — B
e st e e e e
2r)o dip . dp D
E FAE e
e et e s 0,



Seccién eficaz de interaccion (I)

La seccién eficaz (o seccion de choque) es una medida de la probabilidad de
interaccion que tiene una particula al interactuar con otra.

Objetivo

En el caso de un colisionador como en el LHC, se hacen “chocar” haces de
particulas. Por ejemplo: protones, electrones, positrones.
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Seccidn eficaz de interaccion (II)

El haz de particulas tiene asociado incertidumbres debido al momentumy a la
densidad de particulas contenidas

. T —»
L g . A
e O . e .
.- T e — —
11 NUmero de particulas desviadas
0=—=—N= — . . = [pbarn] = 10-3¢[cm?]
1T ¢ Tiempo x Densidad x Velocidad
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Seccidn eficaz de interaccion (III)

En mecanica clasica, se utiliza el parametro de impacto para estimar la
seccion eficaz diferencial.

/lda
b[ /

.......................................................................................................................................................................

La cantidad de particulas que pasan por

do = bdbdg yllegana df?
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Seccién eficaz de interaccién (IV)

https://arxiv.org/abs/hep-ex/0509008

La seccidn eficaz diferencial
corresponde a:

Luminosidad /
del experimento

Numero de particulas por
unidad de angulo solido

30

- ALEPH
- DELPHI
- L3

- OPAL

| ¢ average measurements,
error bars increased
by factor 10

2v

2° Semestre 2020 R. Lineros. IntroduccCidl. « v rivicu ue par vvuras
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https://arxiv.org/abs/hep-ex/0509008

Seccién eficaz de interaccién (V)

CMS Preliminary 2016 + 2017 + 2018 137.1 b (13 TeV)

;a; ATLAS Prellmlnary T T T T T ¢| 'D'alté T : % 240 :l'l LI | TTrTrrrTd l rrrrrrrnri I rrrrrrrrd | rrrrrerra l [ I'1:

50000 - - .

Ef; Vs=13TeV, 139 fb” i Fit 3 Q0 S

2 C %, e Background 4 ~200F [(Jaa-22,zy*

E’ 40000 - J 7] §2) - % Wog—22,Zy* |

T - - % 180 B Z+X —

30000F- 1 Sk E

20000 —~ 1401 =

= E 120~ i

10000— 100:_ E

2 1500F 3 80 =

©  1000F- = 60|~ E

(@)] u - E 3

S 500F 5 40 -

- _ _ i3
Eg 0].. Ve ’ 20
g ool ¥ 0l

&) 110 120 130 140 150 160 80 100 120 140 160
m,, [GeV] m,, (GeV)

https://pdg.Ibl.gov/2020/reviews/rpp2020-rev-higgs-boson.pdf
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Seccién eficaz y amplitud de scattering (I)

Al interaccionar las particulas incidentes pueden ir a parar a distintos estados:

1)
fi)

2)

La seccidn eficaz total es la suma de las secciones eficaces a cada estado final

Ototal — E oF)
7
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Seccidn eficaz y amplitud de scattering (II)

En el caso del scattering de 2 particulas a n-2 particulas

27_‘_ 4 M 2 Regla de oro para scattering
( ) |2 | 9 qu)n(pl +p2ap3pn)
4\/(p1 - P2)? — mims
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Seccidn eficaz y amplitud de scattering (III)

Si nos encontramos en el marco de referencia del laboratorio:

\/(pl 'p2)2 — m%m% %, |p11ab|

y en el marco de referencia del centro de momentum:

\/(Pl p2)? = mim3 = |prem|V's
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Seccidn eficaz a 2 cuerpos (1)

El caso mas sencillo de analizar es el caso de la seccién eficaz a 2 cuerpos:

do =

(27T)4’M’2 54(p _I_p —p3—p ) d3p3 d3p4
4/ (1 o) —memE 0T Y (2n)32E; (2m)32E,

En este caso: p1 = (E1,p1) p2 = (E2,—p1) (centro de momentum)

\/(p1'p2) —m2m3 = |p1|(E1 + E2) = |p1|Vs
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Seccidn eficaz a 2 cuerpos (II)

Asi la expresion se reduce a:

d3p3 d3p4

2
do = ‘M‘
b3 Ey

= — E3 — E,)8°
647r2|p1\\/§5(\/g 3 1)0°(p3 + pa)

Al aplicar la delta® sobre psy reordenar los términos:

do  |MJ
dQ)  64m2|p,|\/s

donde: Ej; =1/p*+ mj} y DP=pP3=—p4
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Seccidn eficaz a 2 cuerpos (II)

La delta en energia la podemos transformar a delta del médulo de ps

EiE;

) _ 2 2 _ 2 2 — 5(p — p*

- \/ i)’

¥ = s —m?2)2 — 4sm?

donde p /s ( 1) 3

y asi obtenemos que la seccidn eficaz por angulo sélido es:

do  [MJ]* p*
dQY 64725 |py|
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Seccidn eficaz a 2 cuerpos (IV)

Hay que remarcar que la amplitud de scattering es invariante de Lorentz.
Para el caso del scattering a 2 cuerpos:

M = M(s,t,u) ‘ Variables de Mandelstam

s =(p1 + p2)* = (p3 + pa)’
t =(p1 — p3)® = (p2 — pa)’
u :(pl —p4)2 — (p2 —p3)2
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Scattering de campos escalares cargados (I)

Anteriormente ya calculamos la amplitud de scattering o1 .. e e ¢3
pl\‘ ................. r/, D3
. . .g’“’ . ql g
—iM = [=ia(py + )= 5l (p2 + )y
p24 .............. o p4¢
e ,

A

: . 1+ D3 o + pa)t . 55— U
—ZM:ZQZ(p p)ﬂ(p 2p) —z./\/lzzq2
(p1 — p3) t
en funcién de los momentum en funcion de las variables s,t,u
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Scattering de campos escalares cargados (II)

En el CM: p1 = (E1,0,0,p) p3 = (E3,psinf, 0, pcosb)

p2 = (E2,0,0,—p) ps = (B4, —psinf, 0, —pcosb)

s=4(p* +m?) t=—-2p*(1 —cos) u= —2p*(cosf + 1)

Asi la seccion eficaz diferencial es:

do  [MPPp ¢ (s—u ’
dQ)  64m2sp  64m2s t
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Scattering de campos escalares cargados (III)

Al reemplazar e integrar en do  ¢* (3s—4m® + (s — 4m?) cos 6)”
angulo @ , se obtiene: dd 327 (s — 4m?2)? (1 — cos 0)2
m?do |

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2° Semestre 2020 B 50 100 500 1000
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Scattering de campos escalares cargados (IV)

Notar que la seccién eficaz diverge para angulos pequefos!!!!

m”do | Vs/m = 100

3.IEII I 0

Falta un diagrama por calcular!
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Scattering de campos escalares cargados (V)

.

hEN
.
g
g
.
‘e

Se nos olvidé incluir el segundo diagrama que nos lleva al mismo estado final
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Ejercicios

Escribir la amplitud total del scattering: ¢¢ — @@

-

- 2 ¥
““““““

......
- & X 5
"""""
.....
. i
- 5
: 3
; ¥
3 Y . '
- . 2
......
- . ) %
- * 2 5
"""""
......
""""
........
““““
......
* - v :
“““
* o5
£
o
"""""""""
. % ° 3
. 4 4 ;
. L2 5 5
“““““
‘‘‘‘‘

y la seccion eficaz.



Reglas de Feynman para QED (I)

Recordando el lagrangiano de QED:

_ _ 1
L = itpy, D ) — mapyp — ZFWFW donde: DH = gt — jgAH

y procediendo de forma similar al lagrangiano de SQED, se obtiene el
lagrangiano de interaccién:

['QED — £¢ + »CEM + »Cint ['int — CI@W“?#AM
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Reglas de Feynman para QED (II)

Los vértices de interaccidn con el fotdn se obtienen a través de ©Lint

o /9 gl i
SQED ~ WWW - —ig(p+p)"
o . N\ g
f
Q E D Y - agyH
f

27 Semestre Zuzu K. LIN€eros. INtroauccion a Ia TISICa de particulas

L i2¢%gH
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Reglas de Feynman para QED (III)

Los fermiones, a través de sus ecuaciones de movimiento, tienen las siguientes

propiedades para sus estados de espin: s=1,2
Electrones Positrones
Funcion de onda w = Ne_ip'mu(s) (p) w — Neip'xv(s) (p)
r
(0" = m)u® (p) =0 (0" +m)o™ (p) =0

Ecuacion de Dirac <

ﬂ(s)(p) (Yup" —m) =0 @(S)(p) (Vup" +m) =0
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Reglas de Feynman para QED (IV)

Ortonormalizacion

Completitud

2° Semestre 2020

Electrones

Z ) (p

= (p+m)

R. Lineros. Introducci

(8)

6nala

fisica

@t (p)ul?) (p) = 2mé;;

de particulas

Positrones

o (p)o D (p) =

—2?7157;3'

Z (8) (8)
—(p—m)
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Reglas de Feynman para QED (V)

Mientras los fotones cumplen para sus estado de polarizacion: )\ = 1,2
Funcién de onda Ecuacion de movimiento
Ay = e~ (p) e'Np, =0
Ortonormalizacion Completitud
2
e (p)e"P (p) = =63 /\z_:l 6" (P)es () = —guv

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas

86



Reglas de Feynman para QED (VI)

También hay reglas para las patas externas.

Electron

Positron

Foton

Escalar

2° Semestre 2020

Entrante _p»
—(O :u(p)
——O :u(p)

....... ,O -1
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Reglas de Feynman para QED (VII)

Y por ultimo los propagadores:

foton electron y positron
gt YuD" +m
T3 L7 2 2
p [ =
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Procesos en QED ()

Usando las reglas de Feynman se pueden construir las amplitudes y entender
procesos

e e e .
B Moller Scattering:
e
e e —e e
e etet > etet

(& e (&
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Procesos en QED (II)

BhaBha Scattering:

e et e e’
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Procesos en QED (III)

g e
L% / Compton Scattering:

Y e
A } > é e:l:,y N €:|:’7
e Y
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Procesos en QED (IV)

Creacion o aniquilacion de pares

e et — Yy

LK
Ve
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Produccién de par de muones (I)

Aunque los muones no son parte de QED, los podemos pensar como electrones
con masa distinta.

_|_

—

e e

En QED + muones, sélo
existe un diagrama
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Produccién de par de muones (1)

Vamos a construir la amplitud de scattering.

e-l— M+
serecorre Ja linea . Serecorre la linea
fermionica segun el sentido fermidnica segun el sentido
inverso. En este caso desde inverso. En este caso desde
el positron hasta el p2/1 el muodn hasta el antimudn.
electron. .

€ ILI/_

_iglﬂ/
iM = {u4 (P4)igyvs (pg)} 7 {Ul (p1)igyuz (pz)}
> >
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Produccién de par de muones (III)

Ya con la amplitud construida, se necesita su complejo conjugado para lograr el
modulo cuadrado.

q2

M = s [Bapa)ws (o) [71 (0" o)

2

MT = (7 im)Q {’51(101)7“1112(172)}T {ﬂ4(p4)%v3(p3)}

T
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Produccién de par de muones (IV)

La amplitud hermitica conjugada, se puede reescribir ya que:

{171(]01)7““2(192)}T = {faz (pz)v“vl(pl)} Y0, YO = Y

U4 (pa)Vuv3(P3) ' U3(P3) Y ua(pa)
| | =1 |

Asi se obtiene:

2

M = o im)z [ﬂz(pz)”y“vl(pl)} [?73(193)%164(1?4)}
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Produccién de par de muones (V)

Ahora podemos calcular la amplitud modulo cuadrado.

4

MP = MMF = — T«
(p1 + p2)

< [as(pa) s (vs)| [51(01)7" 2 2)]

X :ﬂg(pa)v”m(m): :?73(293)’71/%4(294)}

A pesar de que cada bloque tiene indices espinoriales, estan agrupados de
tal forma que forman un numero complejo.
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Produccién de par de muones (VI)

Los podemos reordenar asi identificamos 2 bloques:

M2 o 14(pa) yuvs (ps) | |3 () s ()|

X {ﬂz(pz)Wyvl(pl)] [771(p1)7ﬂu2(p2)}

Cada uno de los bloques son equivalente a una traza sobre los indices espinoriales

[64 (pa)vuvs (pg)} {’53 (p3) Yo us (P4):

a(p2)7" v (py)] [o1(p1) 7 (p2)]

= Tr {ﬂ4 (P4)Vuv3(P3)03(p3) Vo Ua (P4)}

= Tr {’L_LQ (p2)y"v1(p1)v1 (p1) Y us (pz)}
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Produccién de par de muones (VII)

La traza tiene una propiedad ciclica:  Tr{ABAC} = Tr{BACA} = Tr{ACAB}
Tr {’504 (pa)yuv3(ps3)vs (p3)%u4(p4)} — 1Ir {U4 (pa)ta(pa)yuvs(p3)vs (m)%}

Tr {,,;,,2 (p2)7" v1 (p1) 01 (p1 )y us (pg)} — Tr {u2 (p2)tz (pg)v”vl(pl)ﬂl(m)v“}

Asi se obtiene que:

q4

(p1 + p2)4

M| = TI‘{U4(p4)ﬂ4(p4)’mv3(p3)?73(p3)%}

Tr {“2 (p2)t2(p2)7" 01 (p1)171(1?1)7“}
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Produccién de par de muones (VIII)

En el caso de estudiar el proceso sin polarizacion, es decir, no se puede

preparar el experimento con particulas polarizadas ni medir la polarizaciéon de
las particulas salientes.

11
MP=55 >, IMP?

$1,52,53,54
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Produccién de par de muones (IX)

4

1 q S4 —S4 S3 —S83
MPE = po—ss D0 Tr{ud () ms (o) e (00) 23" ()

51,52,8384

Te {u3? (p2)5° (p2)7" 03" (1) (1)1 }

Ahora son utiles las relaciones de completitud:

Z u'® (p)a'® (p = (p+m) Z () (p)5'*) (p = (p—m)
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Produccién de par de muones (IX)

Cada vez se reduce la expresion:

q4

1
4 (p1 + p2)*

M = e (p, + )3y = m ) |

Te { (p, +m)y" (p, — m)r" }

Recordar que: P = ppY"

Asi que necesitamos calcular las trazas de las matrices gamma
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Mas propiedades de las matrices gamma (I)

Las matrices cumple una serie de propiedades, entre ellas sus trazas.

Tr (1) =4
Tr (#impar) = 0
Tr (v"9") = 49"
Tr (V9 P) = 4 (9" g™ — 9" 9" + g"P ™)
Tr (Y977 %) = diet P
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Mas propiedades de las matrices gamma (II)

Otras propiedades son sobre la contraccion de éstas:

Ty =41
Ty A = =2y
VY YA = 4g"
VYV = =290

v
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Reduccioén de la trazas (I)

Con las propiedades de las trazas se puede reducir las trazas en la amplitud:

q4

1
4 (p1 + p2)*

M2 =

e (p, + )3, — ) |
1 {(1'7)2 +m)y (P, - m)vﬂ}
Tr {(p .t m')y, Py — m')%} = pyp§ Tr {vw,ﬁp%} —m/? Tr {w%}

=4 (p4up3u — prSpg,ul/ + PawP3p — m/QQW)
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Reduccioén de la trazas (I)

La segunda traza es mas sencilla de hacer:

Tr {(p2 +m)y (p, — m)v“} = popy Tr {%w”v,w“} —m* Tr {v”v“}
2 vu

= 4 (psp! — Php1,9"* + PhpY — mig"H)

Solo falta la contraccion de Lorentz entre las trazas los términos.
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Reduccioén de la trazas (III)

TI“(. . ) TI‘( . ) — 16 (pgp'lf — pgplpg’/ﬂ + pgpll/ . m291/u)
(pappsy — PiP3pGur + PavP3y — M2 gu)

=32 (p P3Py Pav + DY PapDsD3v

+p'pam’® + phpa,m® + 2m*m?)

Asi obtenemos finalmente la amplitud mdédulo cuadrado:

8q*
(p1 + p2)

(M2 = = (DY P3upyPay + DY Pappypau

+p'paum’ + phpa,m® + 2m*m?)

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas 107



Ejercicios

Escribir la amplitud médulo cuadrado en términos de las variables de
Mandelstam y también en el marco CM.

8q*
(p1 + p2)?

IM|? = (P! P3P Pay + DL PauPsP3L

_|_p/ibp2um/2 +p’§p4u’m2 it 2m/2m2)



Seccién eficaz de produccién de muones (I)

Al considerar que el scattering ocurre en el centro de momenta:

p1 = (E1,pi) p3 = (E3, Do)

L , Di - Do = PiPo COS 0
p2 = (Ea, —p;) ps = (Ey, —Po) b e

y las variables de Mandelstam:

s =2m? + 2p1,p5 t= m? + m'? — 2p1,05 U= m? + m'? — 2p1,.04

s =2m"* + 2p3,pf t=m*+m"® —2pa,p u=m*+m"? - 2py,ph
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Seccién eficaz de produccién de muones (II)

En la amplitud identificamos s,t,u:

M2 o (ph'p3upspay + PY PapPapsy + Py poum' + pypaym? 4+ 2m'*m?)

t t u U S S

Asi la amplitud se reduce a:
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Seccién eficaz de produccién de muones (III)

Por otro lado, como estamos en el centro de momenta:

M2 o (ph'p3upspay + PY PapPapsy + Py poum' + pypaym? 4+ 2m'*m?)

Se puede trabajar cada una de las contracciones y asi se obtiene:

) 4
M2 = T —lf]p I (6m*m'? + 4 (m*p;, + m"*p;) + 2p;p2 (1 + cos® )
1+ D2
——
2
, , 5—4m? , s—4m'?
Ademas: p; = D, =

4 4
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Seccién eficaz de produccién de muones (IV)

Para simplificar el calculo, vamos a considerar el limite ultrarelativista para

electrones y muones: S
y Ee,pe >> me E,Uf?p/JJ >> ml’l’ pg p— pg — Z
2 8¢* 2 12 2 2 12 2 9 9 5
N = S (o 4 (4 )+ 2575 1+ cos'0)
16¢" y . .
M2 = —— (pip2 (1 + cos®)) La seccion eficaz diferencial es:
S

do _ q*(1 + cos? 0) p,
M2 = g¢* (1 + cos®6) ds) 6472s D;
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Seccidn eficaz de produccién de muones (V)

Ahora solo falta integrar en el angulo sélido para obtener la seccion eficaz total:

1 2m 2
B q*(1 + cos? 0)
o= / d(cos ) /0 d¢ YRR

—1

Asi la seccidn eficaz corresponde a:

donde la constante de estructura fina

4 2 2
4 1
0'(8) = d — T Yem Qe — L —

127s 3 s " 4r  137.035999. ..

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas 113



Seccién eficaz de produccién de muones (VI)

g(mbarn)

0.010 |- o
i - ultrarelativista

0.001 f
1074 4 2
; q 4T «
O_(S) — — em
127s 3 s
10'5 *

GeV 2 = 0.389 mbarn

calculo completo

= /5 (Gev)

. | . . . I . . . | . . .
0.5 1 5 1
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Seccién eficaz de produccién de muones (VII)

También podemos calcular la 1_so

o dCos(6) ultrarelativista

probabilidad en funcion del dngulo: | \

o dcosl

1 do (127&9) q*(1 4+ cos? )
2
8

1
-1.0
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Ejercicios

Calcular la amplitud y seccioén eficaz del siguiente proceso.

_|_
o £

.
.
LS
.
.
(3
.
— LS AP
& :

Considere que el escalar cargado tiene la carga y la masa del electron
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Rompimiento espontaneo de la simetria (I)

Tomando como ejemplo el péndulo invertido.

Mientras la vibracién en su extremo inferior,
el péndulo tiene una posicién estable.

Al desactivar la vibracion ese estado se

vuelve inestable y el péndulo cae a un nuevo
estado estable.

https://www.youtube.com/watch?v=50GYCxkgnHQ
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https://www.youtube.com/watch?v=5oGYCxkgnHQ

Rompimiento espontaneo de la simetria (II)

2° Semestre 2020

Mientras la vibracién se mantenga, el estado
de estable (de menor energia).

Este estado es simétrico frente a las reflexiones

lzquierda Derecha
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Rompimiento espontaneo de la simetria (III)

Al detener la vibracion, el nuevo estado estable rompe la simetria de reflexion
al escoger un lado.
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El vacio (I)

En mecanica cuantica y teoria de campos, el vacio corresponde a la configuracion
con menor energia i.e. estado fundamental.

L=T-YV El vacio va a ser homogéneo y estatico en el sentido
de un campo.

Ademas, al ser el estado de minima energia
corresponde al minimo del potencial

)7

8—¢_0 si ¢ — (¢)=w



El vacio (II)

Considerando un campo escalar real y el siguiente lagrangiano:
1 m? A . ,
L = 5 L POH ) — 7¢2 _ Z¢4 Simetria 7, : ¢ > —¢

oV
Entonces al extremar el potencial: = ¢p(m* + \p?) =0

55 =

—m?

Seobtieneque: ¢, =0 y ¢ = =+ solo ¢1 es solucién si m?>0
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El vacio (III)

Considerando un campo escalar real pero con término de masa negativo:

1 TP L
[ = 5 M¢aﬂ¢_|_ 7¢ — Z¢ Simetria /5 : ¢ < —¢

oV _
0p

Entonces al extremar el potencial:

d(—p” + Ap?) =0

2
Seobtieneque: ¢y =0 y ¢o =+ ak ambas soluciones son compatibles

A



El vacio (IV)

La segunda derivada nos indicara cual de las 2 soluciones es un minimo.

0%V
@ — —,UZ + 3)\@52
02V 2 62V 2
(9¢2 d1 8¢2 P2
Maximo local Minimos locales

Inestable Estable
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El vacio (V)

S

0.15

Los vacios estan desconectados
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El vacio (VI)

Si redefinimos el campo en torno al vacio: ¢ = +¢5 + 7

2
El lagrangiano Z5 simétrico: L = %3M¢au¢ 4+ %¢2 _ %gbzl

La simetria Z5 ya no es parte del lagrangiano, pero el nuevo campo tiene una
masa fisica.

2

L= 10m0" o2 vV 2 n? Ad g K

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Rompimiento de una simetria continua ()

El lagrangiano de un campo escalar con simetria U(1) global.
* * * 1\ 2 ()
L= (0.0)" 0"¢ + 126" 6 — X (6" 9) b — e

Mientras A >0y ,u2 > () sabemos que el minimo del potencial no se
encuentra en el origen.

) ) oV .
9 = ¢ (-t +200%9) oo = ¢ (- +22079)

2 2

R. Lineros. Introduccién a la fisica de particulas
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Rompimiento de una simetria continua (II)

Como el vacio tiene una simetria U(1) global. Vamos a suponer que el valor de
expectacion del vacio es real.

v+ o+ax
T

. U+ o—ax
T

v = s

2° Ser 'sica de particulas
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Rompimiento de una simetria continua (III)

El lagrangiano en esta nueva base corresponde:

1 1 B o
L= 5(0,00") + 5 (0ux0"X) = 50" + Lint
2 2 Ao 2\ 2
Ling = =V AuPo (0" +x7) = 7 (0" +X7)

El campo escalar o tiene masa i Boson de

. . Nambu-Goldstone
Mientras que el campo X es un campo sin masa.
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Ejercicios

Usando el lagrangiano:
£—Lopoms— L gr 4 Dgp - 28
2 2 3 4
Encuentre el vacio si: e =0 w >0, A0

¢ Qué condiciones deben cumplir para que el vacio sea estable?



Rompimiento de una simetria de Gauge (I)

Si el lagrangiano de SQED con un potencial escalar que es susceptible al
mecanismo de rompimiento espontaneo de la simetria:

" 1
L= (Dug)" D' =V = 7F" F

V=—120" ¢+ A (¢7¢)° Dy =0, —iqA,

! __ _if(x)
=e
Recordar que este lagrangiano es ¢ ?
invariante U(1) local con transformaciones: AP = AP 1 18“9(33)
q
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Rompimiento de una simetria de Gauge (II)

Debido al nuevo vacio, el campo escalar adquiere un valor de expectacion no nulo
y el campo escalar puede ser expandido en torno a ese vev:

v 1 .
p=—=+n=—72V+0o+ix) con o= 1] B

V2 V2 )
Si nos fljamos en el término de las derivadas covariantes:

(Du¢)” D*¢ = (0, +iqAu) ¢° (0" —igA¥) ¢
=0, 0" ¢ +iqA, (970" ¢ — 93" ¢") + A AN G" P
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Rompimiento de una simetria de Gauge (III)

Si consideramos los términos proporcionales al vev:

x 1
(Dp¢)” D" — §q2112A“A“ esdecir ¢ — %

Se ha generado un término bilineal para el campo Au

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Rompimiento de una simetria de Gauge (IV)

Si solo consideramos los términos que dependen unicamente del foton:

1 1
LD =7 F"Fu + §q202AMA“

iHemos obtenido que el fotén ahora tiene masa!

1 1
LD —7F"E, + §m?4AMA“

Lagrangiano de Proca

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Rompimiento de una simetria de Gauge (V)

Aun nos queda ver lo que queda del lagrangiano, en especial el sector escalar:

Eescalar — (D,u¢) D'LL¢‘|—/L ¢ ¢ )\(¢ ¢) — 1q21J214 AP

para excluir el término de masa del foton

La parte dependiente del potencial escalar: L, = —V
2\ 2
2 o vt v
o d— N )" = — — A " — —
4 2
_ e
el término constante no afecta a la dindmica TV
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Rompimiento de una simetria de Gauge (VI)

Gracias a la factorizacion todo queda mas simple:

¢*¢—§=%02+%X2+v0 1% = 2
Asi:
—A <¢*¢ - U2—2>2 = — \?0? — do? — 204 m2 = 2\v°
_)\UUXQ_éOQXQ_éXzL mi:O

2 4
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Rompimiento de una simetria de Gauge (VII)

Aun nos quedan los términos que salen de la derivadas covariantes:

« 1 1 1
(Dp¢)” D" — 5(12”0214“14“ =3 00" o + 5(%)(8“)(
— quﬂA“ (02 — X2)
—qA,, (vVO'x + 00" x — x0"0o)

La mayoria son términos de interaccidn entre 3 campos, términos de
cinéticos, pero hay uno raro:

Un término bilineal que mezcla el fotdn
—quA, 0"
q po X y el boson de Nambu-Goldstone
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Rompimiento de una simetria de Gauge (VIII)

Centrandonos en los términos que dependen de los campos: x, A"

1 1
LD 5(%)(8“)( — quA 0" x + §q2v2AﬂA“
1
Transformado encampo: A, — A, + —0J,x
qu

—quA,, 0" — —quvA,0"x — 0,,x0"x
1 1

§q UQA AR — 2q ’U2A A+ 8uxf9“x—|—qu4u5’“x
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Rompimiento de una simetria de Gauge (IX)

1 1
Al sumar todo, se pasade: L D iaux(‘?“x — quA, 0" X + §q2v2AﬂA“
15 9
aa LD 2q v°A, AP

Es decir que el bosén del Nambu-Goldstone fue absorbido por el fotén masivo.

1 . L L
A, — A, +—0,x Ahor.a el.foton masivo tiene una polarizacion
qu longitudinal asociada con su masa.
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F1jacién del Gauge (I)

Debido a la libertad debida a la simetria de Gauge, existe un término que se
puede agregar al lagrangiano para evitar problemas debidos a esa libertad:

1

LD ——(0,A")*
25( M )
E—0 Gauge de Landau, equivalente al gauge de Lorentz
E=1 Gauge de Feynman
E=3 Gauge de Yennie

Gauge ¢
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Fijacion del Gauge (II)

Para el caso de boson de gauge masivos

1
LD —5(8,“4“ — §mAx)2

& —0 Gauge de Landau
E=1 Gauge de Feynman

£ =00 Gauge de T'Hootf

Los procesos son invariantes con
respecto al valor de ¢

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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El Mecanismo de Higgs (I)

Los fisicos Robert Brout, Francois Englert, Peter Higgs (entre otros) propusieron
en la década de los 70’s un mecanismo de rompimiento espontaneo de simetria
que es pieza clave dentro del Modelo Estandar.

Brout Englert Guralnik Hagen Higgs

https://francis.naukas.com/2010/06/05/el-sexteto-de-higgs-premio-de-la-aps-en-honor-a-j-j-sakurai-y-la-historia-del-mecanismo-de-higgs/
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El Mecanismo de Higgs (III)

N
$)]

N
o

Events/5 GeV

N
(%)}

10

https://doi.org/10.1016/j.physletb.2012.08.020

| L] | L T T L | T T T T I T
F 0 e ATLAS
_ [ Back d 22" .

- IR H-2Z" 4l
- [l Background Z+jets, f
- []Signal (m =125 GeV)
" 7% Syst.Unc.

Vs =7TeV:|Ldt=4.8 fb"

" (s =8TeV:/Ldt=5.8fb"

https
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100 150 200 250
m, [GeV]

://twitter.com/1cRebeca/status/1308459869868097536

https://www.youtube.com/watch?v=1LLWmw_rJZQ
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El Mecanismo de Higgs (III)

El mecanismo de una explicacion de como los bosones que se asocian a la
fuerza nuclear débil adquieren masa, al igual que los fermiones del Modelo
Estandar.

Simetria de Gauge Simetria de Gauge

SUB). x SU@)L x Uy ™ oui3). % Ul)py

Gi, W. B, Gl WF Z, A,

0 p

8 3 1 8 2 1 1

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas 28



Fuerza Nuclear Débil

La Fuerza Débil, responsable de los decaimientos radiactivos, ha servido para
cuestionar muchas de las simetrias en fisica de particulas.

- - El experimento de Wu que estudia el
A udu VQ . . M

o decaimiento beta del Cobalto viola la
simetria de Paridad

La Fuerza Débil solo se acopla a los
N campos Left-Handed

Chien-shiung Wu
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Grupo SU(N)

El se compone por el grupo de matrices unitarias y de
determinante 1 que actuan sobre un vector de N componentes complejas.

UlU=UU"=1yxny detU=1 & =Ud
Cualquier elemento del grupo se puede construir a partir de los generadores de
grupo:

N2—-1
U=-expi Z 76 [T“, Tb} =5 Z fareT©  Algebra de Lie



Grupo SU(2) (I)

Un caso muy conocido en fisica su algebra es: [7-’;, 7-3'] — 9tk Kk
1 0 1 2 _ 0 —2 3 1 0 . _
— 11 ol — i ol’" “lo =1 Matrices de Pauli

Las transformaciones del grupo SU(2) ~ ; B
se construyen en base a las matrices U(f) = exp <§7_" 9)

de Pauli

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Grupo SU(2) (1)

Las matrices de Pauli estan en la representacion fundamental, es decir, actuan
sobre objetos que se denominan dobletes de SU(2)

_ ?bl /! gb,l L N le
= (cb) v = (%) =v®) (¢>
Entonces Ia estructura:

d TP’ — TP esinvariante de SU(2)

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Teoria Electrodébil (I)

Historicamente, la teoria electrodébil se construye en base a la evidencia
observacional.

Las transiciones nucleares seguian una logica: transiciones que cambiaban el
numero isotdpico entre nucleos

Se construyen los numeros cuanticos:

I5 : 1sospin débil Y : Hipercarga

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Teoria Electrodébil (II)

Ademas las particulas con isospin e hipercarga siguen una regla con su carga
eléctrica:

7 Y Formula de
Q=1Is+ 9 Gell-man—Nishijima
de tal manera que:
BLZQ:—ll VL:Q:Ol €RIQ=—1
13:—§,Y:—1 I3:—|—§,Y:—1 I3 =0,Y = -2
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Teoria Electrodébil (III)

Entonces los leptones (y quarks) se pueden representar usando isospin e
hipercarga.

Doblete isospin Singlete isospin
Hipercarga Y = -1 HipercargaY = -2

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas

35



Bosones de gauge SU(2)xU(1) (I)

Cada simetria tiene sus propios bosones de gauge que estan asociados a
cada generador de grupo:

Hipercarga Isospin

: vl 2 3
UQl): B, SU(2) : Ww Ww Wu
Donde el lagrangiano con simetria U(1) local para el boson B:

1
L = _ZBILLVB,U,I/ donde B,uy — a,uBz/ - al/Bu

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Bosones de gauge SU(2)xU(1) (I)

El lagrangiano con simetria SU(2) local para los bosones W es:

1 1%
,C p —g TI’ (W’u W'u]/)

donde  WHY — FAW Y .

We, =0,Wg —0,W; — ge®* W, Wy

~

. . . acoplamiento de gauge
2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas P gaug
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Bosones de gauge SU(2)xU(1) (III)

La traza se puede escribir como:

Tr (WH' W) = WHW,, Tr (197°)
= Wrw,, 26

por lo tanto:

1 1% 1 apvyxra
,C — —g 1Tr (VV'u W’uy) — —ZW H W,LLI/
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Leptones en SU(2)xU(1) (I)

La evidencia experimental indica que la componente Left y Right son afectadas
de manera distinta frente a la fuerza débil.

Recordando al lagrangiano de un fermidn en la base chiral.

£ =1 (x"6"0ux) +i(£'6"0,€) —m (x'€ +&Tx)

Término de masa

- L — s L+ s
Donde: o)) = 5 Y — X YR = 5 Y — &
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Leptones en SU(2)xU(1) (II)

El lagrangiano de un fermion en términos de espinores de 4 componentes:

L = Priv, 0" + Yriv0"vr +m (g + YrYL)

Si, Y1, = er , Yr = eg, no habria problemas de agregar la interaccion
electromagnética.

Usando la derivada covariante; ot — DV = o+ — iq. A"

pero los bosones de Gauge son otros!
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Leptones en SU(2)xU(1) (III)

Los campos fundamentales en la teoria electrodébil son: L., ep

El lagrangiano que es invariante SU(2)xU(1) local es:

_ 1 1
L = L¢ivy, D} L, + egivy,Dxer — - Te (WH'W ) — ZBWBW

donde:

/ /
D = 0" +iY TB" +iSr' Wi Djy = 0"+ iV T B"

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Leptones en SU(2)xU(1) (IV)

Las derivadas covariantes tienen “estructuras distintas” porque los campos L.
y er se acoplan de forma distintaa By W.

/
DE = or + iY%B“

Una matriz de 2x2 con respecto a SU(2)

—

/

or+iYLBr 4 iwse L e — e

D — 2 2 2
L g/

ig(W1“+iW2“) o + iV LB —igww
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Leptones en SU(2)xU(1) (IV)

Para simplificar notacion, se define:

Wt =

W, —iW;3 - W, i

U

W~ =
0 NG) I

asi se reduce la derivada covariante a:

/
" + iy L BH 0
B 2 9
D1 = A
0 o + iy LB

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Leptones en SU(2)xU(1) (V)

El lagrangiano para la parte right-handed:

LD @’L"')/“D%GR

/
L D eriv, (8” + z’Y%B“) ER

como Y = —2

L D erivy, (0" —ig'B")epg

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Leptones en SU(2)xU(1) (VI)

El lagrangiano para la parte left-handed: (conY = —1)

L = L_eify,uDgLe — (ﬁ, 5) Z’)/ILLD'IE (:ﬁ)

expandiendo:

2 2

ey, (3 (s ) (2)
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Leptones en SU(2)xU(1) (VII)

Al juntar todo, se puede observar que:

Interacciones que no
corresponden al
fotdn ni al boson Z
/
. g .9
L Dvrivy, ((9“ —ZEBM —I—Z§W3“ VT, /

/

+ ELi, (aﬂ _ z’%B” - igW?’“) er

+ UL, (i\%W*“) er, -+ ELiv, (fz%wu) vr

\

Interacciones de la fuerza débil
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Leptones en SU(2)xU(1) (VIII)

En el modelo se visualizan las nuevas interacciones entre los leptones y lo
bosones By W.

Los términos de masa para los leptones:

—T
LD —megepr—m'L, L.

iSon nulos y ademas no respetan la simetria SU(2)xU(1) local!

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Leptones en SU(2)xU(1) (IX)

Asi que esta descripcion en términos de la simetria SU(2)xU(1) falla en:

Los fermiones no tienen masa m~ =0
No contiene al foton myz = 91.1876 4 0.0021 GeV

Los bosones W+, W~ no tienen masa
El bosén Z no aparece. mw = 80.379 = 0.012 GeV

Es decir, aun no esta completo!

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Ejercicios

Escribir el lagrangiano de los bosones W

1

£:4

auvYxsa
We - W,

en términos de los bosones:

W3 Wt W



Rompimiento espontaneo de SU(2)xU(1) (I)

Vimos que el mecanismo de rompimiento espontaneo en SQED producia un
fotédn masivo.

Ahora vamos a considerar a un escalar que transforma frente a la simetria
SU(2)xU(1):

b = (21) en este caso un doblete de SU(2) con hipercarga Y.
2
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Rompimiento espontaneo de SU(2)xU(1) (I)

El lagrangiano que es invariante ante nuestras simetrias locales:

2 1 v ]‘ aur a
L=(D,®)'D"® + 1*®T® — \ (®TP)" — 1B By — W W,

Donde, la transformacion del campo escalar es: &' = U(0)®

La nos indica que la hipercarga y el isospin no
pueden tomar cualquier valor debido a la carga eléctrica:
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Rompimiento espontaneo de SU(2)xU(1) (III)

Por lo tanto la asignacion de la hipercarga es bastante clara:

Y =1 Y = —1
Ql_%+§ Q1 =1 Q1 =0
e
@‘<@>
Q2—_%+§ QQZO QQ——].
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Rompimiento espontaneo de SU(2)xU(1) (IV)

Vamos escoger el casocon'Y = 1: ¢ = oF d* = ¢
g ) T ¢0 — gbO*

Sabiendo que el potencial va a producir un vev en el doblete escalar:

escalar cargado

7

ot —
¢ = (¢0> - ﬁ(v+fi+iG\(1)

parte real

parte imaginaria

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas
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Rompimiento espontaneo de SU(2)xU(1) (V)

Asi la minimizacion del potencial se puede hacer en base a cada campo.

V= 1200 4 A (d10)°

Ecuaciones de Tadpole:

24 2 2 oV
— =t =v (VA — i — t0 =0
oh campos—0 ( ) G campos—0 “
oV 2%
oG+ campos—0 oG campos—0
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Rompimiento espontaneo de SU(2)xU(1) (VI)

Al resolver las ecuaciones de tadpole se obtiene la relacion que ya conociamos:
_ _ _ _ 2 .2
th—tgo—t(;+—t(;——0 9/ = \v

Ademas las segundas derivadas del potencial con respecto a los campos nos
entregan los términos de masa.

Y
—m2 =202 >0 , -
mi v > BYels 0

0%V
g

campos—0 campos—0

boson de Higgs bosones de Nambu-Goldstone
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Bosones de gauge masivos (I)

La interaccion entre el doblete escalar y los bosones de gauge ocurre en la
derivada covariante, y los términos de masa aparecen gracias al vev:

1
Solo tomando el caso: o= — (O>
V2 \Y
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Bosones de gauge masivos (II)

Entonces en torno al vacio, los términos corresponden a:

‘ +
DO = L\/,U ( ’%ﬁwﬂﬁ;&b) vector columna
2v/2 \Y9 — g
(Duq))T — 2?/%’” (9\/§W_M g Bt — gW?’”) vector fila
Ya que la derivada DH — i (28“ + ¢’ BH 4 W3 gV2W )
covariante es una matriz: 2 gV 2W 201 + g’ B — gW3H
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Masa de los bosones W

La multiplicacion de ambos términos resulta:

U2

8

v2g?
4

(D, )" (D"®) = WHHW, +

iLos bosones W*ahora tienen masa!

2

2 g 9
me, = —
Wy

(9'Bu — gW;3) (¢’ B" — gW?H)

Aun falta entender que pasa con
los otros bosones
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Masa de los bosones Ay Z (I)

El término que depende de B y W3 corresponde a:

2

% 2 2117371173 3 3
= (g’ B,B" + g W W=H — g'gB, W°H — g’gWuB“)

Los campos B y W3 estan mezclados, es decir, no tienen estados de masa definida.

Es decir que el lagrangiano libre de cada boson no se puede separar!
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Masa de los bosones A y Z (II)

Estos términos se pueden escribir como multiplicacion de vectores y matrices:

Es necesario diagonalizar la matriz para poder desacoplar los campos.
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Masa de los bosones A y Z (III)

La diagonalizacion se puede lograr mediante una rotacion:
B, _ pT A, _ (cos Ow —sinOw\ (A,
Wj’ Z, sin 0y cosOw Z,

de tal manera que:

2
RM? R = (mA 02)
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Masa de los bosones Ay Z (IV)

Hay que resolver este sistema de ecuaciones:

cosOy  sinfOy U_Q g% —g'g\ (cosOy —sinfy\ [(m?% O
—sinfy cosbyw ) 4 \—¢'g ¢> sinfy  cosfy ) \ 0 m%

Resolviendo las ecuaciones de los términos fuera de la diagonal, se obtiene que:

/ /

g : . g g
- > sin Oy, = > - tan Oy = —
Vit +y' VI +g g

cos Oy =

A Oy se le conoce como el angulo de Weinberg
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Masa de los bosones Ay Z (V)

Al realizar la multiplicacion matricial:

2 pT 0 0 m?4
et = (01 o) =

Por lo tanto:

Es decir, uno de los bosones tiene masa nula y el otro no.
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Masa de los bosones A,Zy W

El mecanismo de Higgs nos entrega 3 bosones masivos y 1 sin masa:

1 92
2 2 2 12\ 2 2 2
miy = 0 mZ:Z(g +g )v iy =S
Ademas las masas estan amarradas: mw = cosOpwmy

myz ~ 91.1876 GeV

cos Oy ~ 0.8816 — Oy ~ 28.18°
mw ~ 80.379 GeV
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Términos cinéticos de los bosones (I

Después del rompimiento espontaneo de la simetria, nuestro lagrangiano luce:

2
2 — myz 1 1% 1 a v a
LD my WHW, —I——2 M7, — ZB“ BW_ZW WL

Hay que escribir los términos cinéticos en funcion de los campos autoestados
de masa:

A, Z, W[ W]
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Términos cinéticos de los bosones (II)

Donde:
B, =cosOw A, —sinbw 2, W/‘j = sinfw A, + cosOw 2,
8 V2 g V2
Asi:

B,, =90,B,—0,B, =cosOwl),, —sinlwZ2,,

B,,B" = cos? Ol i+ sin? Ow Z,,, Z"" — 2 cos Ow sin Oy F,, ZM"
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Términos cinéticos de los bosones (III)

Los bosones de SU(2): W, =90, W, — 9, W — geabCWSWf

Al escribirlos explicitamente:
”71 er ”71 ”721173 ”r31172
,LLI/:a,U 1/_81/ ,u_g( w'Vv Yy 1/)
”72 Wr2 ”72 ”73”71 ”71”73
,ul/:a,u 1/_81/ ,u_g( p'lr o 1/)

Wj,, =0,W3 — a,,wj —q (WgW,? — WjW,})
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Términos cinéticos de los bosones (IV)

Al hacer los reemplazos:
WEZV = sinOw I, + cosOw Z,, —ig (I/VM_VV;r — W;W,/_)

Y el término cinético:

WS,/W3“” — gin”? A cos® Oy Z uy + 2sin 8y, cos Ow F,, 2
— 2¢° (W;W‘“W;W’L” — WJWJ““WV_W’L”)
— 249 (sin Oy F + cosOw Z,,,) (W_“W+” — W+“W_”)
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Términos cinéticos de los bosones (V)

Realizando lo mismo con los otros términos, se pasa de:

2
2 —+ — mZ 1 1 1 auy a
A:
1 1 2
LD = F"Fuy = 32" Zy + %ZMZM
1

— SWIHW, 4 myy WHW + Ling
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Interaccién con los leptones (I)

Se habia visto que el lagrangiano de interaccién con los leptones correspondia a:

L D L.ivy, DY L. +eriv,Drer
. v __
D (v, er)iv,DYy ( L) + eriv,Drer

€L

Donde dentro de las derivadas covariantes esta contenida la interaccion con
los bosones de Gauge.
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Interaccién con los leptones (II)

Ese lagrangiano corresponde a:

/
LS TLiv, (aﬂ - z%B“ + igWg“) vr

/
+ BT, (aﬂ _ z’%B“ — igW?’“) er, + eRiv, (0" — ig' B") e

+ ULy, (i%Wﬂ‘) er, + €Lty (i%W‘“) 18
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Interaccién con los leptones (III)

Considerando la parte que depende del neutrino:

_ u .g/ u .9 11730
Uy, o, _ZEB —|—Z§W vy,

UL, <8“ + % (gsinfy — g’ cos by ) A* + % (g cosby + ¢’ sinfy) Z“) VI,

acoplamiento con A acoplamiento con Z
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Interaccién con los leptones (IV)

Usando la relacion entre seno y coseno con los acoplamientos gy g”

/
gsinOy — g’ cosOw = g J — 4 J
\/9/2 _|_g2 \/9/2 _|_92

=0 > acoplamiento con A

/
gcosOy + ¢ sinfy = g I +q I
\/9/2 _|_g2 \/9/2 _|_g2

= Vg% + g% =
cos Ow
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Interaccién con los leptones (V)

Entonces:

Corresponde a:

2° Semestre 2020

g’ g
%3 (aﬂ — z‘EB“ + i§W3“) Ur

_ : g
o ZH
VL( +ZQCOS«9W )VL

El neutrino sélo se acopla al boson Z!
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Interaccién con los leptones (V)

Ahora si se procede de manera similar con la parte del electrén:

/
eLiv, (aﬂ _ i%B” - igW?W) er, + exiv, (0" —ig' B*) eg

Los términos dependiente de los bosones de gauge quedan:

g'B* + gW?F = 24’ cos Oy A" +

(C082 Oy — sin® HW) /A
cos Oy

g'B* = ¢’ cos Oy A* — ¢’ sin Oy ZH
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Interaccién con los leptones (VI)

Por lo tanto, el lagrangiano para el electron:

€LV (8“ —1g’ cos Oy AP — i (cos® Oy — sin? HW)Z“) er

2 cos Oy

+ iy, (0" —ig' cos Ow A¥ + ig’ sin Oy Z*) ep

Las componente left y right se pueden relacionar con el espinor de Dirac:

L+ 5
2

L =5
er, = 9
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Interaccién con los leptones (VII)

Entonces el lagrangiano para el electron se puede escribir:

Yoy (0" — ig’ cos Oy A*) the + iy, (—igf Z*) e + ¥ iv, (—ighZ*) er

Donde:

A g 2 .2 A ;.
= cos” Oy — sin“ 0 — —q' sinf
IL 2 cos Oy ( W W) IR g W

que implica que el bosdén Z se acopla de forma distinta a la componente left y right
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Interaccion con los leptones (VIII)

Si nos fijamos en:
Vi (0" — ig’ cos Oy AM) o,
y lo comparamos a QED:
P, (0" —igA") 4
Si la carga eléctrica del electron: e = g’ cos Oy

iObtenemos la interaccion electromagnétical
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Ejercicios

Escriba el lagrangiano de los electron con el boson Z en términos de los
acoplamientos vectorial y axial:

Lze = Voivu (190 Z") e + Voivy (—195 2" 5) e



Términos de masa de los fermiones (I)

En el modelo con simetria SU(2)xU(1), no se puede escribir un término de
masas los fermiones cargados:

LD —mysppiy
El lagrangiano de masa para el electron corresponde:

LD —m, (@6[, + @63)

vy,
€r,
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pero €1, pertenece al doblete [, = ( ) y €Rr es un singlete.
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Términos de masa de los fermiones (II)

Para poder escribir un término de masa en el modelo simétrico, este tiene que
ser invariante ante SU(2)xU(1).

Usando el doblete y el singlete se pueden construir los términos:

Le R erL

Ambos términos transforman bajo las simetrias ya que:

L' = exp (—i%T“é’“ + iga)l} er =exp (ig'a)er
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Términos de masa de los fermiones (III)

Cada uno de los términos tiene una forma particular de transformar:

Le,=(L 9 _apa 'g/ - _ T .9 _apa -g’
ep = | Lexp 5T 0 —iga exp (ig'a)er | = Leg exp 15T 0 —I—ZECK

VAR T ./ -gaa -g/ o -gaa, -g/ I
el = (erexp(—iga) )| exp —i5T 0 —|—z§a L) =exp —i5T v, —iga erlL

La transformacion resultante tiene forma conocida.
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Términos de masa de los fermiones (IV)

El doblete escalar usado para romper espontaneamente la simetria tiene
hipercarga Y=1.

¢" g g
o = <¢0) ) d’ = exp (—7357'@9“ — i;a)@

Asi que:

/ /
L'en® = Lerexp (igﬂ@“ + i%a) exp (—i%T“é’“ — i%a)q)

L'en® = Ler® Es invariante de SU(2)xU(1)!
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Términos de masa de los fermiones (V)

El lagrangiano de interaccién invariante SU(2)xU(1) corresponde:

LD —y.Lber —y'er® L

Donde formalmente:

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas

84



Términos de masa de los fermiones (VI)

. o , v
Considerando los terminos proporcionales al vev: gbo = ﬁ
*
YeU__ YeU__

LD —yeerd’er — yrere e, mmp LD — 5 CLeR T S OREL

Asi identificamos que el electron obtiene una masa gracias al vev del Higgs.

el _
Lo -2 (érer + €rer) me =

V2 V2

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas




Términos de masa de los fermiones (VII)

Por su lado, el neutrino no tiene un término proporcional al vev.

Es decir que en la teoria electrodébil los neutrinos son particulas sin masa:
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Leptones en la Teoria EW (I)

Existen 3 familias de leptones con idénticas cargas electrodébiles

L=LcilpyLe+egildrer + Lyilpp L, + TRiD R
T L_TZlDLLT + ﬁilﬁRTR

o yeL_eq)eR — y,uL_,u(I),uR — yq-L_T(I)TR + h.c. Masas

1 1

_BmpB,
4 H 4

Interacciones

apv Iy Bosones de Gauge
WEEEW
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Leptones en la Teoria EW (II)

No es dificil darse cuenta de la estructura de los leptones mas pesados.

Doblete SU(2)
Hipercarga Y=-1
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<

€R

HR

TR
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Singlete SU(2)
Hipercarga Y=-2



Leptones en la Teoria EW (III)

Se diferencian por las masas:

YeU
me = — ~ 0.5 MeV
V2

m,, = Iu? ~ 105 MeV

V2

m,r = % ~ 17G€V

V2
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J=3

Mass m = (548.579909070 + 0.000000016) x 10~6 u
Mass m = 0.5109989461 + 0.0000000031 MeV
Imy« — m,_|/m< 8x107% CL = 90%
e + g.-|/e < 4x1078
Magnetic moment anomaly

(g—2)/2 = (1159.65218001 + 0.00000026) x 107
(gg— ge_) / Eaverage = (—0.5+2.1) x 10712
Electric dipole moment d < 0.11 x 10728 ecm, CL = 90%
Mean life 7 > 6.6 x 1028 yr, CL = 90% 1

I3
Mass m = 0.1134289257 + 0.0000000025 u
Mass m = 105.6583745 £ 0.0000024 MeV
Mean life T = (2.1969811 + 0.0000022) x 106
77, = 100002 £ 0.00008
cr = 658.6384 m

Magnetic moment anomaly (g—2)/2 = (11659209 + 6) x 1010
(€ — £,-) / Baverage = (~0.11 = 0.12) x 108
Electric diapole moment ‘d‘ < 1.8x 10719 ecm, CL = 95%

-
J=3

Mass m = 1776.86 = 0.12 MeV
(m, e — m__)/Maerage < 2.8 x 1074, CL=90%
Mean life 7 = (200.3 = 0.5) x 107 1% ¢
cr = 87.03 um
Magnetic moment anomaly > —0.052 and < 0.013, CL = 95%
Re(d;) = —0.220 to 0.45 x 107'® ecm, CL = 95%
Im(d;) = —0.250 to 0.0080 x 10716 eem, CL = 95%

Weak dipole moment
Re(d¥) < 0.50 x 10717 eem, CL = 95%
Im(d*) < 1.1 %1071 ecm, CL = 95%

Weak anomalous magnetic dipole moment
Re(a¥) < 1.1x 1073, CL = 95%
Im{a%) < 2.7 x 103, CL = 95%
m+ — 7% K%u, (RATE DIFFERENCE) / (RATE SUM) =
(—0.36 £ 0.25)%
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Leptones en la Teoria EW (IV)

Ademas en la teoria electrodébil el numero leptonico por familias se conserva:
#L =#Le +#L, + #L~

#L.=1:¢ep,er,Ver #L.=—1:(er) (er)’, (Ver)
#Lu =1:ugr,pur, Vg #L,u =—1: (MR)Ca (:UJL)Ca (V,ML)C

#L,.=1:7Tr, 7L, Vrr #L,=—-1:(tr)% (10)¢, (Vr)°
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Leptones en la Teoria EW (V)

Por ejemplo, en el decaimiento del muén

Carga eléctrica
Numero mudnico
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Quarks en la teoria EW (I)

Bariones: qqq

Los quarks son fermiones que conforman a los hadrones. _
Mesones: qq

El modelo de quarks fue propuesto por Gell—Mann y Zweig en 1964

Pastel de quark
Quarkstrudel

Murray Gell—Mann George Zweig

Y descubiertas en 1968 en el colisionador SLAC

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas

92



Quarks en la teoria EW (II)

Los bariones y mesones son estados ligados debido al confinamiento que
produce la fuerza nuclear fuerte a bajas energias.

En existen 6 sabores de quarks en 3 familias:

Q=2/3 ullc||?

S
Va
o

Q=-1/3

F1 F2 F3
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Quarks en la teoria EW (III)

, - Y
Usando la féormula de Gell—=Mann Nishijina: Q=13+ >

Y motivado por la estructura de los leptones en SU(2)xU(1), para la primera familia:

VA

Singletecon Y =4/3 Singletecon Y =-2/3

R

Doblete SU(2) con
hipercarga Y=1/3
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Quarks en la teoria EW (IV)

Conociendo las cargas SU(2)xU(1) de los quarks, entonces el lagrangiano:

L=QiD.Q + uriDrur + dril pdr — yaQPdr — y.QPur + h.c.

Donde
/

Y _ayrra v Y
D, =0, — VT W, — ZYQEBM

/

R = Oy ZYQB uR_a —szQB
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Quarks en la teoria EW (V)

La masa de los quarks se genera a traves del mecanismo de Higgs
LD —yaQPdr — y3dr®'Q — y,QPur — Y, urd'Q

~

Notar que los términos para el u dependende: & = i1, d™

(5 9 (5)- ()
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Quarks en la teoria EW (VI)

El doblete escalar tilde transforma bajo SU(2)xU(1) segun:
/
®" = exp (—igT“HG — 'ig—a><1>
2 2

. / /
®’ = it% exp (igTa*Qa — i%a) O* = exp (—i%T“H‘I -+ i%a) iT2P*

/
®’ = exp (—igTaé’a + ig—a) P transforma como doblete SU(2) con hipercarga Y=-1

2 2

2° Semestre 2020 R. Lineros. Introduccién a la fisica de particulas



Quarks en la teoria EW (VII)

Asi todos los términos son invariantes SU(2)xU(1):
L5~ yiQPdr — y;dr®'Q — y.QPur — y,urP'Q

y a través del mecanismo de Higgs:
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Masas de los quarks (I)

Las masas de los quarks nos entregan informacion del acoplamiento con el higgs:

My = 2.2MeV  myg ~ 4.7 MeV
ms >~ 93MeV m,. ~ 1.27GeV
mp ~ 4.18 GeV  my; ~ 176 GeV

iLos valores de las masa de los quarks es muy variado!
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Masas de los quarks (II)

Por otro lado, las masas del proton y del neutron

@ & my, = 0.938GeV > 2m, +mg = 9.1 MeV

©

@ & m, = 0.939 GeV > m, + 2m4 = 11.6 MeV

©

Tienen masa mayor que la suma de la masa de sus quarks
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Masas de los quarks (III)

La contribucion mayor a la masa de estos objetos viene por el vacio de QCD!

A bajas energias los quarks y gluones forman un condensado producido por
el comportamiento de la fuerza fuerte

¢ e ¢ e
© ©

Gran parte de la masa de los atdbmos viene por el vacio de QCD
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Cromodinamica Cuantica (I)

La interacciones entre los quarks se describen en el modelo de QCD.

Los quarks son fermiones que trasforman bajo la simetria SU(3).

Cada quark esta compuesto por 3 quarks con carga de color
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Cromodinamica Cuantica (II)

El lagrangiano de QCD corresponde a

_ 1

»CQCD — \Ijqi (Z(’Y“Du)w — mém) \Iqu — Ga Ggy

4 H
donde los bosones de gauge de QCD se llaman gluones:
be 2b
G2, = 9 A — 8, A% + g3 faPe AL AL

.93 \a pa
‘D,U zﬁu—z?)\ AN
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Cromodinamica Cuantica (III)

El grupo SU(3) tiene 8 generadores y forman un algebra de Lie

[)\CL) )\b] — 22.fa,bc)\ca

2
{)\aa )\b} — §5ab13><3 + 2da,bc>\c

Donde f son las constantes de estructura y d son los coeficientes de simetria
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Cromodinamica Cuantica (IV)

En la representacion fundamenta, aparecen la matrices de Gell-Mann:

0
A= |1
0

-

Ao =

2° Semestre 2020

1
0
0

-

-

0 0
0], Xao=1]1
0 0
1 0
0], As=10
0 )
0 0
1], =10
0 0
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-

-

0 0
1 0],
0 0
0 0
1 0
0 —2
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El Modelo Estandar

mass
charge

spin

QUARKS

LEPTONS
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Standard Model of Elementary Particles

three generations of matter

interactions / force carriers
(bosons)

(fermions)
I Il 1]
=2.2 MeV/c? =1.28 GeV/c? =173.1 GeV/c? 0
% % % 0
@ O | ® ||
l up L charm l top gluon
=47 MeV/c? =96 MeV/c? =418 GeV/c? 0
=% -% - 0
@ '@ |- @ ||
l down lstrange t bottom photon
=0.511 MeV/c? =105.66 MeV/c? =1.7768 GeV/c? =91.19 GeV/c?
-1 = = \ 0
@ | @ [ @ |
lelectron l muon l tau Z boson
<1.0 eV/c? <0.17 MeV/c? <18.2 MeV/c? =80.39 GeV/c?
0 0 0 +1
- @@ [ ® ||
electron muon tau
l neutrino neutrino l neutrino W boson
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=124.97 GeV/c?

0

o H
higgs

GAUGE BOSONS

VECTOR BOSONS
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