

Majoron dark matter from a spontaneous inverse seesaw model

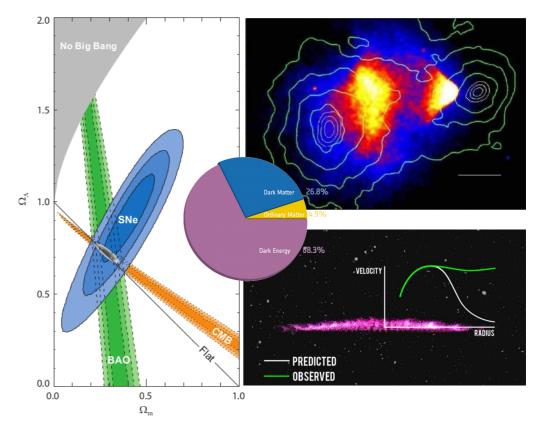
Roberto A. Lineros Instituto de Física Corpuscular UVEG/CSIC

In collaboration with N. Rojas and F. Gonzales-Canales – arxiv:1703.03416

Seminar ULB PhysTH - May 5, 2017

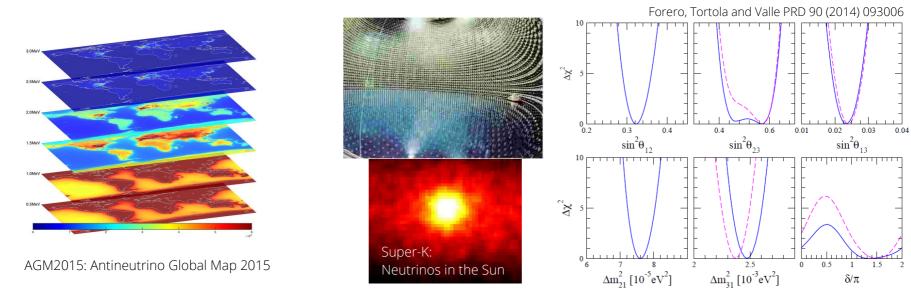
Motivation

Majoron DM models provide a tantalizing connection between Dark Matter and Neutrinos



This talk

Neutrinos



The SM predicts zero neutrino mass

Beyond SM physics is required to explain mass spectrum and mixing angles
Majoron dark matter @ ULB

Neutrino mass mechanisms

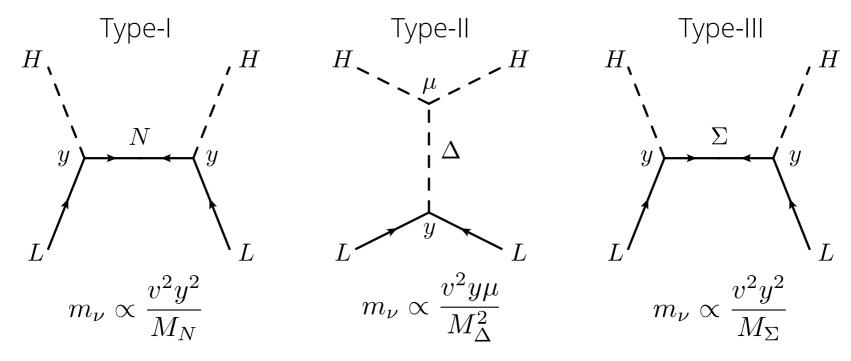
A large fraction of the models uses the 5-dim Weinberg operator to generate majorana neutrino masses

$$\mathcal{O}_{5ij} \propto (L_i H)^T (L_j H)$$

This operator breaks lepton number in 2 units

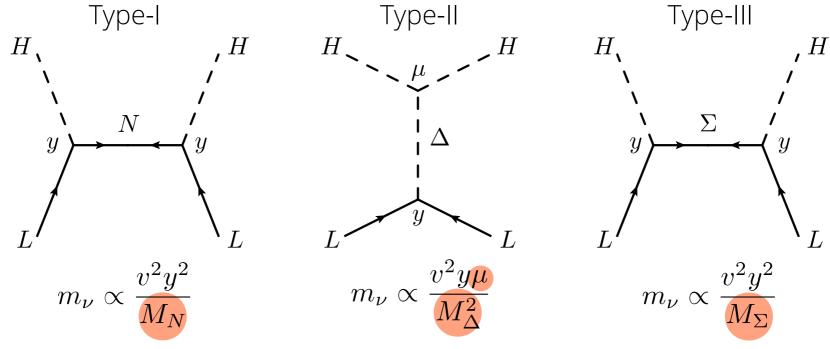
Neutrino mass mechanisms

The commonly known schemes are see-saw mechanisms



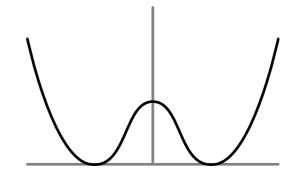
Neutrino mass mechanisms

The commonly known schemes are see-saw mechanisms



The Type-I seesaw can be generated by the spontaneous breaking of the U(1) lepton number symmetry

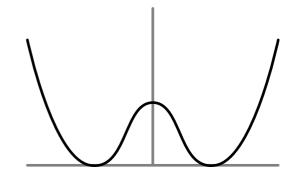
$$S = \frac{v_S + \sigma + iJ}{\sqrt{2}}$$



$$\mathcal{L} \supset -y_L \overline{L}HN^c - \frac{y_S}{2}S\overline{N^c}N + h.c.$$

The Type-I seesaw can be generated by the spontaneous breaking of the U(1) lepton number symmetry

$$S = \frac{v_S + \sigma + iJ}{\sqrt{2}}$$



$$\mathcal{L} \supset -y_L \overline{L}HN^c - \frac{y_S}{2} S \overline{N^c}N + h.c.$$

 $m_D = \frac{y_L v_H}{\sqrt{2}}$

After the SSB, we get the Type-I seesaw

 $M_N = \frac{y_S v_S}{\sqrt{2}}$

$$\mathcal{L} \supset -m_D \bar{\nu}_{\rm L} N^c - \frac{M_N}{2} \overline{N^c} N + h.c.$$

and 2 scalars: σ and J

$$m_{\sigma} \simeq v_S$$
 $m_J = 0$

$$m_D = \frac{y_L v_H}{\sqrt{2}}$$

After the SSB, we get the Type-I seesaw

$$M_N = \frac{y_S v_S}{\sqrt{2}}$$

$$\mathcal{L} \supset -m_D \bar{\nu}_{\rm L} N^c - \frac{M_N}{2} \overline{N^c} N + h.c.$$

and 2 scalars:
$$\sigma$$
 and J

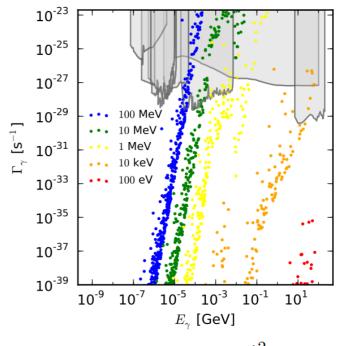
———— DM candidate

$$m_{\sigma} \simeq v_S$$
 $m_J = 0$

Details in arxiv:1406.0004

Majoron as DM (pros)

- Neutral
- Weakly coupled to the SM
- Long lived



$$\Gamma_{J \to \nu\nu} = \frac{m_J}{32\pi} \frac{\sum_i (m_i^{\nu})^2}{2v_1^2} \qquad \Gamma_{J \to \gamma\gamma} = \frac{\alpha^2 m_J^3}{64\pi^3} \left| \sum_f N_f Q_f^2 \frac{2v_3^2}{v_2^2 v_1} (-2T_3^f) \frac{m_J^2}{12m_f^2} \right|^2$$

Majoron as DM (cons)

$$m_J = 0$$

... but global symmetries are not protected under gravity effects

Therefore

$$m_J \neq 0$$

... and the majoron DM is just a pseudo Nambu-Goldstone boson

Majoron as DM (our fixing)

What defines a majoron DM?

- It is a (pseudo)scalar
- It is part of the neutrino mass mechanism
- Its signature is the decay into neutrinos
- It is massive

The standard inverse seesaw

$$\mu \ll m_D \ll M$$

$$\mathcal{L} = -\frac{1}{2} n_L^T C \mathcal{M} n_L + h.c.$$
 $\mathcal{M} = \begin{pmatrix} 0 & m_D & 0 \\ m_D^T & 0 & M \\ 0 & M^T & \mu \end{pmatrix}$ $n_L^T = (\nu_L, N_1^c, N_2)$

The standard inverse seesaw

$$\mu \ll m_D \ll M$$

$$\mathcal{L} = -\frac{1}{2}n_L^T C \mathcal{M} n_L + h.c.$$

$$n_L^T = (\nu_L, N_1^c, N_2)$$

$$\mathcal{L} = -\frac{1}{2} n_L^T C \mathcal{M} n_L + h.c. \qquad \mathcal{M} = \begin{pmatrix} 0 & m_D & 0 \\ m_D^T & 0 & M \\ 0 & M^T & \mu \end{pmatrix}$$

$$n_L^T = (\nu_L, N_1^c, N_2)$$

Lepton number violating term

The standard inverse seesaw

$$\mu \ll m_D \ll M$$

Active neutrinos

$$m_{\nu} = \left(\frac{m_D}{M}\right)^2 \mu$$

Heavy neutrinos

$$m_{\mathcal{N}'} = M - \frac{m_D^2}{M} + \frac{\mu}{2}$$
 $m_{\mathcal{N}} = M - \frac{m_D^2}{M} - \frac{\mu}{2}$

The standard inverse seesaw

$$\mu \ll m_D \ll M$$

Some numerology:

$$M \sim 100 \, \mathrm{TeV}$$
 $m_D \sim 10 \, \mathrm{GeV}$ $\mu \sim 10 \, \mathrm{MeV}$

$$m_D \sim 10 \, {\rm GeV}$$

$$\mu \sim 10 \, \mathrm{MeV}$$

$$m_{\nu} \sim 0.1 \, \mathrm{eV}$$

$$\alpha = \frac{\mu}{M} \sim 10^{-7}$$

Spontaneous Inverse seesaw

To generate the inverse seesaw scheme we need to add 2 complex scalars

$$\mathcal{L} = -y_L \overline{L} H N_1^c - y_S S^{\dagger} \overline{N_2} N_1^c - \frac{y_X}{2} X^{\dagger} \overline{N_2^c} N_2 + h.c.$$

$$m_D = \frac{y_L v_h}{\sqrt{2}}, M = \frac{y_S v_S}{\sqrt{2}}, \text{ and } \mu = \frac{y_X v_X}{\sqrt{2}}$$

Spontaneous Inverse seesaw

To generate the inverse seesaw scheme we need to add 2 complex scalars

$$\mathcal{L} = -y_L \overline{L} H N_1^c - y_S S^{\dagger} \overline{N_2} N_1^c - \frac{y_X}{2} X^{\dagger} \overline{N_2^c} N_2 + h.c.$$

$$v_S > 50 \text{ TeV}$$
 $v_X > 5 \text{ MeV}$

Spontaneous Inverse seesaw

But the charge assignments do not follow the typical one of the ISS

	L	N_1	N_2	S	X
$SU(2)_L$	2	1	1	1	1
$U(1)_Y$	1/2	0	0	0	0
$U(1)_l$	1	-1	x	1-x	2x

$$x = 3/5$$

$$\mathcal{L} = -y_L \overline{L} H N_1^c - y_S S^{\dagger} \overline{N_2} N_1^c - \frac{y_X}{2} X^{\dagger} \overline{N_2^c} N_2 + h.c.$$

Scalar potential

The assignment fixes the potential

$$\omega = \frac{v_X}{v_S}$$

$$V_{\text{scalar}} = V_{XS} + V_{HXS} + V_{I}$$

$$V_I = \lambda_{\rm cp} e^{i\delta} X S^{\dagger 3} + h.c.$$

$$S = \frac{v_S e^{i\theta} + \sigma_S + i\chi_S}{\sqrt{2}} \qquad X = \frac{v_X e^{i\tau} + \sigma_X + i\chi_X}{\sqrt{2}}$$

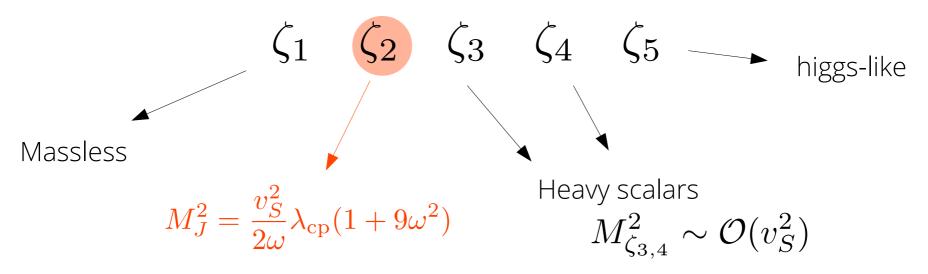
The tadpole equations relate the CP phases: $\tau = 3\theta - \delta - \pi$

Mass spectrum

$$\omega = \frac{v_X}{v_S}$$

Now we have 5 spin-0 fields:

4 related to L breaking 1related to EW breaking



Majoron DM stability

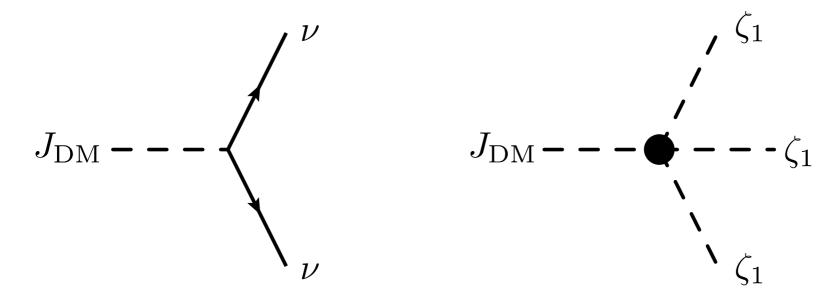
The only candidate is the lightest massive scalar i.e. $\ \zeta_2 = J_{
m DM}$

We still has to satisfy the stability condition:

$$\Gamma_{\rm DM} < 10^{-52} \, {\rm GeV}$$

Decay modes

There are potentially dangerous decay modes:



Decay into neutrinos

$$\alpha = \frac{\mu}{M} \sim 10^{-7}$$

The decay rate vanishes for:

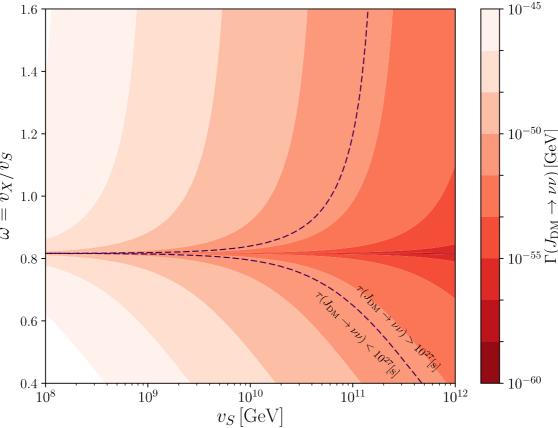
$$\omega_0 = \sqrt{2/3}$$

$$\Gamma_{\nu} = \Gamma_{0\nu}(\omega_0) \, 4\alpha^2$$

$$\Gamma_{0\nu}(\omega_0) \simeq 10^{-40} \,\mathrm{GeV} \left(\frac{m_\nu}{0.1 \,\mathrm{eV}}\right)^2 \left(\frac{M_J}{1 \,\mathrm{keV}}\right) \left(\frac{v_S}{100 \,\mathrm{TeV}}\right)^{-2}$$

Decay into neutrinos

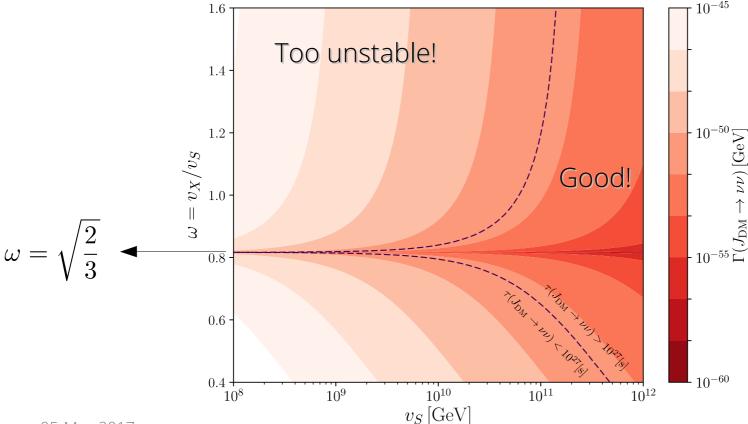
$J_{\rm DM} \to \nu \nu$



05-May-2017 27/41

Decay into neutrinos

$J_{\rm DM} \to \nu \nu$



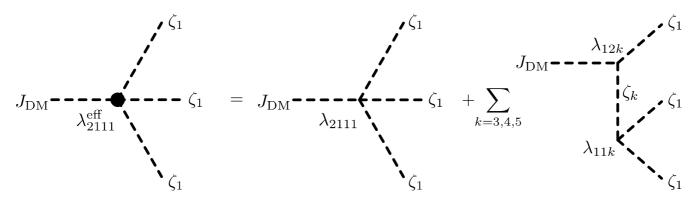
Stability thanks to vev alignment

05-May-2017 28/41

Decay into scalars

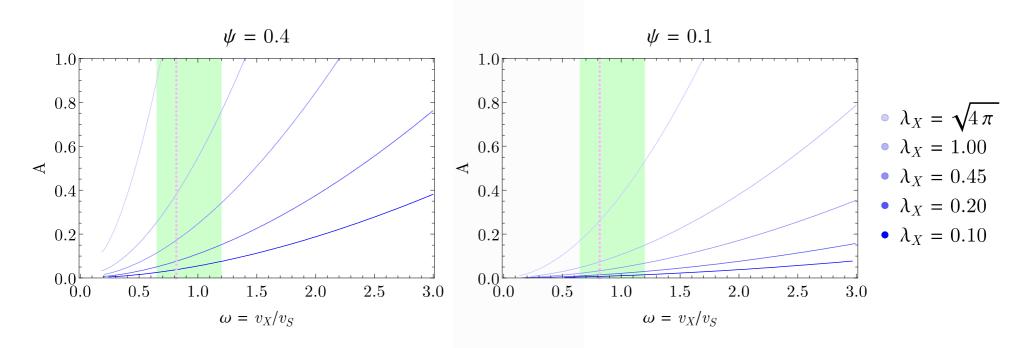
Without a protective symmetry, this channel is not suppressed

However we can find the parameter space where the mode vanishes



Decay into scalars

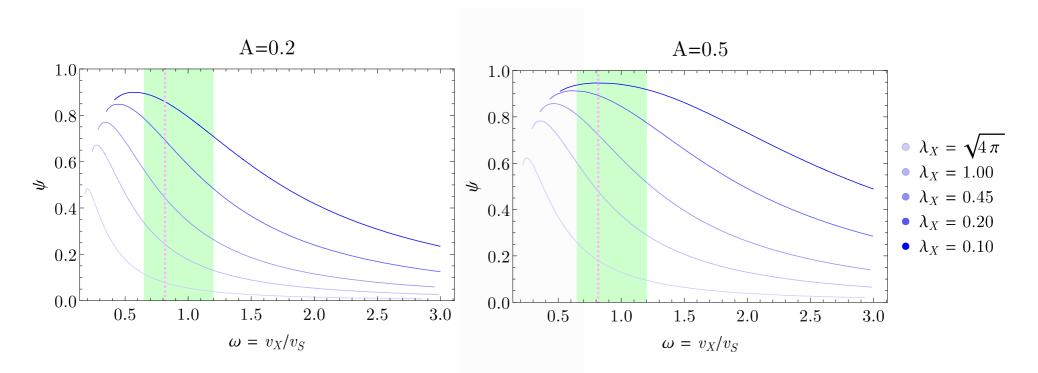
$J_{\rm DM} \to \zeta' {\rm s}$



The interplay of different diagrams allows to vanish the decay mode

Decay into scalars

$J_{\rm DM} \to \zeta' { m s}$



There is a whole volume that satisfy this condition

Conclusions

 The spontaneous inverse seesaw provides a well suited majoron DM candidate

 Our majoron DM is phenomenologically equivalent to the PNGB one

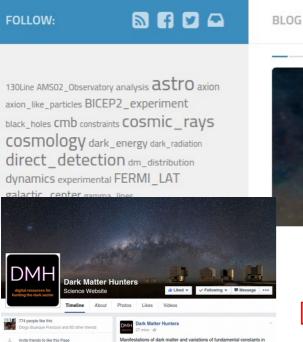
• The vev alignment has a relevent role in the DM stability

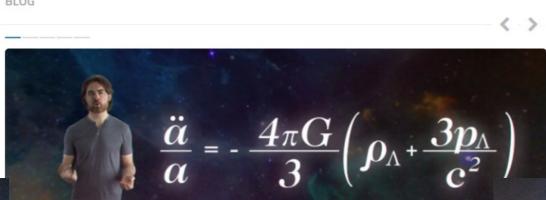
Dark Matter Hunters

Digital resources for hunting the dark sector

www.dmhunters.org

NEWS



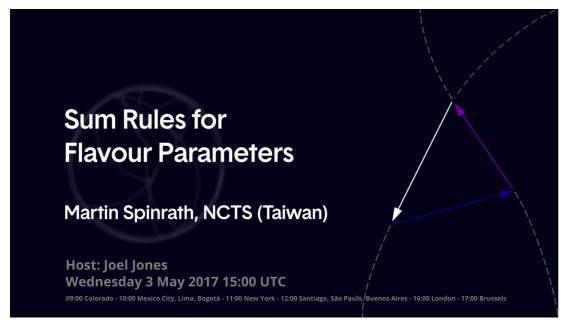


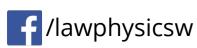
Daily digest of papers about Dark Matter and related topics

atoms and astrophysical https://t.co/JmEkenIL6U #darkmatte

lawphysics

Latin American Webinars on Physics





/lawphysics

lawphysics.wordpress.com

Conclusions

 The spontaneous inverse seesaw provides a well suited majoron DM candidate

 Our majoron DM is phenomenologically equivalent to the PNGB one

• The vev alignment has a relevent role in the DM stability

Thanks!

Extras

Charge assignments

5 possible models

	L	N_1	N_2	S	X
n=1	1	-1	1/7	6/7	2/7
n=2	1	-1	1/3	2/3	2/3
n=3	1	-1	3/5	2/5	6/5

$$V_{\rm I} = \lambda_{\rm cp} e^{i\delta} X^m S^{\dagger n}$$

$$m+n=4$$

$$m+n = 3$$

	L	N_1	N_2	S	X
n=1	1	-1	1/5	4/5	2/5
n=2	1	-1	1/2	1/2	1

The rest of the scalar potential

$$V_{SX} = -\mu_S^2 |S|^2 + \frac{\lambda_S}{4} |S|^4 - \mu_X^2 |X|^2 + \frac{\lambda_X}{4} |X|^4 + \lambda_5 |S|^2 |X|^2 + V_{\rm I}$$

$$V_{\text{HSX}} = -\mu_H^2 H^{\dagger} H + \frac{\lambda_H}{4} (H^{\dagger} H)^2 + \lambda_{HS} |S|^2 H^{\dagger} H + \lambda_{HX} |X|^2 H^{\dagger} H$$

Mass spectrum

$$m_h^2 \simeq \frac{v_h^2}{2} \left\{ \frac{\lambda_H}{2} + 2 \left(\frac{\lambda_{HX}^2 \lambda_S + \lambda_{HS}^2 \lambda_X - 4\lambda_5 \lambda_{HS} \lambda_{HX}}{4\lambda_5^2 - \lambda_S \lambda_X} \right) \right\}$$

$$M_{\zeta_3}^2 \simeq \frac{v_S^2}{2} \left(\frac{-A + A\psi + 2\lambda_X \omega \psi}{2\psi} \right)$$

$$M_{\zeta_4}^2 \simeq \frac{v_S^2}{2} \left(\frac{A + A\psi + 2\lambda_X \omega \psi}{2\psi} \right)$$

$$\lambda_S = A + \lambda_X \omega^2$$

$$\lambda_5 = -A \left(\frac{\sqrt{1 - \psi^2}}{4\omega \psi} \right)$$

Numerology

Parameter	Value
M	100 TeV
μ	$10 \; \mathrm{MeV}$
m_D	$10 \mathrm{GeV}$
v_S	$10^8 - 10^{12} \text{ GeV}$
ω	0.4-1.6

$$\lambda_{\rm cp} \simeq \frac{M_J^2}{v_S^2} < 10^{-22}$$